
DATE:

r4

FROM:

SUSJECT:

March 29* 1976

Ppoararaming and Engineering Sta*ff

?». L- Grub in

P-4CC PROCESS EXCHANGE ANO NEW PROTOCOLS

PE-T--232

I I .

III

IV

V

I. Process Exchange

A. Oata Sases
1. Ready Li st
2. WAIT Lists
3- Process Control Slock (PCS)

E. Instruction Primitives . .'
.1. WAIT
2. ?<OTIFY

C, Dispatcher and Register File Management
1 . Ready L i s t Ma in tenance
2. Register Set Assignment
3. Fetch Cycle Trap

T r a p s * I n t e r r u p t s * F a u l t s * Che-cJcs

A- E x t e r n a l I n t e r r u p t s
1 • Cpera t i o n
2 . S p e c i a l I n s t r u c t i o n s (I-RTN* INOTIFY)

B. Faults
'1 . Data Sases
2. CALF

3. Fault Handler

C. Checks

Regi ster Files

Control Panel

CP Timer

•» f * ,r <"• Page 2 PE-T-232

ftwo.i>I. : P20CSS:S SXCHANSF - \
rtfpc ; , : - : • J
3f;Cn_vThe P-rcces.s -exchange mechanism i s composed of t h r e e data bases and two

teazle I n s t r u c t i o n p r i m i t i v e s . The data bases are the reaay l i s t * wai t
L i s t s * and Process ControL Slocks (PCS) . The bas ic i n s t r u c t i o n
p r i m i t i v e s a re WAIT and .NOTIFY. In a d d i t i o n * t h e r e i s an independent
mechanism f o r controLLing the usage of two r e g i s t e r sets which is
r e l a t e d t o * but not p a r t o f * the ready L is t data b a s e .

J.-v,.:

i -j

» r.

A. Data Bases

1. Ready List

1.1 . The ready List is a two-dimensional List structure used for priority
^".. scheduling and dispatching cf processes. The entire ready List data ^
^l" ^base (excluding Live registers) and aLL PCS's are contained in a 1
tV'* single segment. The segment number of this segment is contained in a
t - 5 16-bit register called OWNSftH. uithin the segment* aLL painters and
'+' \ -addresses (except fauLt vectors and wait List pointers) are 16-bit

word number quantities.

The,, two-dimensionality of the ready List is achieved with a Linear
array of List headers for each priority LeveL composed of a Beginning ..%
of List (SOL) pointer and an End of List (SOL) pointer.

Each painter is the 16-bit word number address o.f a PCS (in the same" *
segment as the ready List). The PCS's en each priority LeveL List are
f crward-t hreaded through a 16-'cit Link word* and as 'many PCS's as
desired can be threaded together on each priority LeveL to form the
ready List. A process* priority LeveL is both determinec by and
encoded as the address of a SOL pointer in the ready List. Priority
order is determined by arithmetic comparison* i.e.* smaLLer numbers
(addresses) are higher priorities. As a resuLt* priority LeveL List

; headers must be aLLocated in contiguous memory at system startup time.

The end of the ready List is determined by a SOL containing a 1 (PCS
addresses must be even). An empty LeveL is indicated by a SOL
containing G. Figure 1 is a picture of the ready List structure. The
32-bit registers PPA (Pointer to Process A) and PP8 (Pointer to
Process S) are a speed-up mechanism far Locating the next process to
dispatch. PPA always contains both the LeveL (SOL pointer) and PCS
acdress (designated LeveL A and PC3A) of the currently active process.
Pro points to the NEXT process to be run when process A *goes away1.
PPA not only points to the currently active process/ but* by
definition* LeveL A is the highest level in the system. It is possible
for PPP. and PP* to be •invalid'- This condition is indicated by a PCS
address of 0. It is important NOT to disturb the level portions-*
especially level A since* even if invalid* level A indicates the
highest level that WAS in the system and therefore determines where 1r
the ready list to begin a scan* if necessary (.PP* . invalid)/ for th
next process to run. In a completely idle system* both PPA and PPS
will be invalid and* upon completion of the ready list scan* the u-ccde

. w.iLl gc into a 'wait fcr interrupt* Loop.

v'~ It is important to notice that there .is no word number pointer to the
vw>-$rst priority Level in the ready list. The ready list allocator/
<\#^_. ch starts the process exchange mechanism/ knows where the list
vVigins and/ during execution/ level A (in PPA) will always point to
either the highest level currently in the system, or" -the last .'known
highest level anc/ hence/ acts as an effective ready list begin
pointer. In addition/ level 3 will always be higher \ tfian ' the *'s"econd
level to run. That is/ a PCS can never be on a level higher t h W "level
S unless it is the only PCS higher than level 3 (i .e.*„ leyet. A)*.*

- ' * w

- .- - • r rj •*

Two 'queuing' algorithms will be implemented for the ready I is$/^either
FIFO or LIFO queuing.
2. WAIT Lists

Every PCS in the system will always be somewhere. If it is not on. the
ready list/ then/ by definition/ it will be on a wait list..: A wait

J^ist is cefined by a 32-bit semaphore consisting of 3 16—bit"', counter
»C) and a 16-bit word number SOU pointer. Since the ready list and
all FCS's reside in one segment (OWNERK)/ and only PCS's co onto* wait
lists/ a segment' number is not needed in the semaphore. -However/
semaphores themselves can be anywhere and/ in general/ are HOT in the
PCS segment. The structure of a wait list is shown in Figure 2.

"p~"iotice that the last block on the wait list contains a 0 link' word-
-v-! rice also that the semaphore contains only a SOL pointer. "'?''\

(,ie •queuing' algorithm for wait lists is process priority queuing.
That is/ the priority level of a PCS will determine where on the wait
list the PCS will be queued. For PCE's of equal priority/ the
algorithm becomes FIFO.

2. Process Control Slock (PCS)

he contents of the PCS are shown in Figure 3. The PCS can be' broken
ito the fallowing logical sections which are ordered as shown:.

a. Control
0 - level (pointer to SOL in ready list)
1 - link (pointer to next PCS or 0) ••-"•

2#3 - SK/«N of Wait List this block is currently on (SN=G
indicates on ready list)

^ — abort flags used to generate Process Fault when PCS is
dispatched -

Current bit assignments 1-15: HSZ
16: process interval

timer overflow
S/7 - reserved

Y • . . .

._}#*-* b. Proxess State • -

3^9 - Process elapsed timers (must be maintained by software
that resets the interval timer)

i •

Page 4 PE-T-232

Z. 10*12 - 0TAR2 and DTAR3 insv&r saved* always r e s t o r e d) -^
"" 14 - Process I n t e r v a l Timer w i th 1.024 msec r e s o l u t i o n

15 - Reserved *""
16 - $3M^ mask - used to avoid saving and restoring

registers s 0
Bits 1- S: SRC-GR7 C2 words each)

9-12: FPG-FP1 <4 registers* 2 words each)
13-16: Base Registers(PB*S3*LB*XB)

17 - Keys
12*33 - GR0-SR7
34,41 - FP0-FF1
42*49 - Base Registers (PS*SB*L3*X8)

Note that although all the registers are assigned locations
within the PCS* only non-zero registers will actually be saved
which results in a compacted list which can only be determined
by the bits in the save mask. In general/ the saved registers
(those not equal to 0) will be between words 18 and 49. The
order of the registers* however* is fixed as above.

c. Fault CSee section on Faults for a description of the use of
this portion of the PCS)

50*59 - Fault Vectors: SN/WN pointers to fault tables for
Ring C* Ring 1* Page Fault and Ring 3
fault handlers '::*̂ r

60*62 - Concealed Fault Stack Header — I
63*.. - Concealed Stack - 6 .word entries- (This stack need

net start at word 63).

3. Instruction Primitives

There sre two basic instruction primitives for the process exchange
mechanism: NOTIFY and WAIT. In addition* NOTIFY has two variants.
These instructions* similar to Ojikstra's P and V operators* are
essentially •interlock' mechanisms- These instructions are three-word
(4S-fcit) 'instructions' as follows:

Instruction (16-bit universal generic)"
32-bit pointer to semaphore address

As suggested by the names* WAIT is used to wait for an event (CP* time/
unit record device available/ whatever) and NOTIFY is used to signal
that an event has occurred. In particular* a WAIT is used to wait for
a NOTIFY and a NOTIFY is used to alert a process which is waiting.

Coordination is achieved by means of a semaphore containing a counter
.and a 30L pointer. The semaphore and the PC3's waiting for the event
of that semaphore constitute a wait list. The counter/ if greater than
0/ indicates the number of PCS's on the wait list. If negative/ it %

indicates the number of processes that can obtain the resource :_ J
Semaphores fall into two categories: public and private. A public-^^
semaphore is used to coordinate several processes together or control a, ".
system resource. Private semaphores are used by a single process to

>

Page Pfe-f-i^i

V

coordinate its own activities. For example/ if a disk request is made/
^-^rccess will wait en a private semaphore for the disk operation to

vJ^.4p let e. The disk process will then notify the semaphore upon
completion. The distinguishing characteristics of a private semaphore
is that only 1 PCS can ever be on that wait list, A public semaphore
can have many different PC3*s on its wait list.

1. WAIT

The operation of wait is as follows: the semaphore counter is
incremented and/ if greater than 0/ (resource not available/event has
not occurred)/ the PCB is renroved from the ready list and added to the
specified wait list. If the counter is less than or eaualto 0/ the
process continues. If the PCB is put on the wait list/ the general
reqisters are NOT saved and the register set is made available.
Therefore/ a process can NEVER depend on the general registers being
intact after a WAIT. In fact/ from the point of view of an executing
^ccess/ a WAIT appears as a NOP which destroys the registers. In
acaition/ !»AIT will turn off the process timer. Figure 4 is a detailed
flew chart of the WAIT instruction.

2. NOTIFY

NOTIFY 'instruction has two flavors:

NFYE: use FIFO queuing op code Sit 16 = 0
NFYE: use LIFO queuing op code 8it 1 6 = 1

The ins
The op
oecre'ne
less t
PCS is

\.ie not
than
Mnterr
detai le

tructiens differ ONLY in the ready list queuing algorithm used,
eration of NOTIFY is as follows: the semaphore counter is
nted and the notifying process continues- If the counter is
han 0/ no action is taken/ but if greater than or equal to 0/ a
removed front the top of the wait list and added to the ready
No explicit action is ever taken on the notifying process/ only

ified semaphore. If a notified process is of higher priority
the notifying process/ the latter will . be effectively
upted*/ but will remain on the ready list. Figure 5 is a
d flow chart of the NOTIFY instruction.

C. Dispatcher and Register File Management

The oispatcher is the root of the process exchange mechanism and is
responsible for determining the next process to run Cbe dispatched)/
and assigning that process a register set. There is considerable
overlap with NOTIFY and WAIT in functionality related to maintaining

_the ready list. Per example/ both NOTIFY and WAIT update PPA an-d PPB
(-as appropriate/ but the dispatcher scans the ready list if PPA is
~; jpsv .'.slid. Register file management/ including any necessary saves and
-ff jstcres/ ace the sole province of the dispatcher. Figures 6 and 7 are
'^»etailed flow charts of the dispatcher.

Page 6 PE-T-232

•* 7 s

1. Ready List Maintenance -C~s

Upon entry* the dispatcher first asks if PPA is valid- If it is* the
process is assigned a register' set and dispatched- If PPA is not
valid* a scan of the ready list is initiated. If a PCP is found* PPA
is adjusted and the process dispatched. If the ready list is empty*
the dispatcher idles- whenever a process is dispatcheo the process
timer is turnea on.

.2. Register Set Assignment

In each register set* a register* designated OWNER* contains a pointer
tc the PCS cf the process which owns the set. OWNER is a full 32-bit
pointer and OWNSRH is used throughout the system to deternine the
segment number of the ready list and PCE's. Obviously* OWNERH must be
the same in both register sets. In addition* the low order bit of the
keys register CKEYSH) is used to indicate whether the register set is
available- The bit is called the Save Done bit and* if set* indicates
that the register set and its copy in the owner's PC3 are identical (a
save has been done)- This bit is set by the save routine (called from
WAIT or the dispatcher) and reset when a process is dispatched.
Uhether a register set is available (SD=1) or not* it is always owned.
Therefore* if a process goes away (either as a result of a WAIT or the
notification of a higher level process) and comes back agai
immediately anc* if that crocess still owns the register set* a restore-'
operation is not necessary. If a register set switch is necessary* the
process timer is turned off. The details of selecting which register
set tc assign tc a process being dispatched is shown on the right of
Figure c. The dispatcher is the only code which switches register
sets.

3. Fetch Cycle. Trap

At various points in the dispatcher (Indicated by I on the flow chart)
a check for interrupt pending (fetch cycle trap) is made- As a
result* interrupts can occur either in the fetch cycle or in the
dispatcher. The possible Fetch Cycle traps are:

1. External Interrupt (See Part II-A)
2. CP-timer increment ana possible overflow (See Part V)-
3. Power Failure (See Part II-C)
4- Halt switch on control panel (See Part IV)
5. Enc-of-Instruction Trap

r^^S

r ace r c-i-ijc

This bit is set by the dispatcher upon detecting a trap and is
~\^n a process is actually dispatched (return to fetch cycle).

reset

Ii TRAPS/ INTERRUPTS/ FAULTS/ CHECKS

Four words used frequently
interrupt1)/ 'fault'/ and
carefully distinguished
execution are diviced
•interrupts*/ 'faults*/
hand/ refers to a break

are 'trap'/ "interrupt" (or 'external
*check". The meanings of these terms are

for the P-40a/5GQ. Software breaks in
into three main categories referred -to as

and 'checks'. The word 'trap.'/ on the other
in execution flow on the u-code level. '• *

Traps can occur for many reasons/ not all of which cause software
visible action/ and are always processed on the u-code level. Some
traps may directly or indirectly cause breaks in software execution/
but not all software breaks are the result of a trap.

OR the PRIMS 3C0/ interrupts/ faults/ and checks used the same protocol
C^get to their respective software handlers/ namely they caused a
vector through a dedicated sector 0 location (JST* vector). On the
P-4GG/5QG/ when process exchange node is enabled/ the three categories
use different protocols both from the P-3GG and each other- Roughly/
the three teras are used to describe:

1 . Interrupt - a signal has been received "from a device in. the
external world (including clocks) indicating that
the device either needs to be serviced or has
completed an operation. In general/ an interrupt
is not the result of an operation initiated by the
currently executing software and will not be
processed by that software (though/ of course/ it
may) .

2. Fault a
soft
curr
can
many
curr
gene
not
of
devi
in p
a pa

cond
ware
entl
be h

ca
ent
ral/
dire
a f
ces
erf o
ge f

itio
int

y e
andl
ses
proc

an
ctly
ault
are
rrain
ault

n h
erve
xecu
ed b
com

ess
ex
inv
CO

invo
g a

as b
nt ion
ting
y the
mon
hand

terna
olved
nditi
Ived
page

een
as a

sof tw
curr

super
les
I dev
in e

on .
indi r
turn

det e
dir

are.
ent
vi so
the
ice
i the
Ofte
ect I
oper

cted
ect r

In q
softwa
r cod
fault

in the
r the
n/ how
y as/
at ion

that
e s u 11
enera
re/ t
e wi

A
real

cause
eve r/
for

as a

requires
of the

1/ faults
hough in
thin the
lso/ in
world is
or cure
externa I
exampIe/

result of

3- Check - an internal CP consistency problem has been
detected which requires software intervention.
The condition could be either an integrity
violation/ reference to a memory module which does
not exist/ or a power failure. By contrast/ a
reference to a pane which is not resident or an
arithmetic operation which causes an exception is
a FAULT condition.

Page S PE-T-232
\

A.* External Interrupts

1« Caeration

î

External Interrupts operate in either of two modes depending upon
whether process exchange is turned on. If process exchange is off* all
interrupts are treated as P-3GC interrupts- In all cases* except
memory increments the address presented by the controller Cor *63 if in
standard interrupt node} is used as the address in segment 0 of a
16-bit vector. This vector* in turn* points to interrupt response code
(ISO* also in secmert C* which is entered via a simulated JST* through
the vector. Thus* the current P-eounter (RPL) is stored in (vector)
and execution begins at location (vector) +1 with interrupts inhibited*
but with no other keys or modals changed. If in vectored interrupt
node* it is the responsibility of the software to do a CAI. In either
mode* the full RP is saved in the register PS'WPB.

If process exchange aode is on* an entirely different mechanism
operates. In all cases* except memory increment* the address presented.
by the controller is used as a 16-bit word number offset into the
interrupt segment (#4).. This segment is guaranteed to be in memory*
but STLs misses may occur. The current PS (actually RP) and KEYS
(keys and modals) are saved in the u-code scratch registers PSWPS and
PSWKEYS. The machine is then inhibited and the IRC begins execution i.
64V mcce. It is the responsibility of the IRC to issue a CAI. It is
important to note that the IRC in the interrupt segment, does not belong
to any process. PPA points to the PCB of the interrupted process and*
in fact* no PCS exists for the IRC. Also* except for PS and KEYS* no
registers are saved. In fact* even PSWPB and FSWKSY5 are in the
register file and net in memory. As a result* the IRC cannot do an
enable and must return to the process exchange mechanism (i.e.* the
dispatcher) as soon as passible. .Because of all these restrictions on
what the immediate IRC can do* as well as the fact that it does not
belcng to any process* it is referred to as phantom interrupt code,"^
Unless the job of servicing an interrupt is very simple* phantom
interrupt code can do little more than turn off the controllers
interrupt mask* issue a CAI* and NOTIFY the real IRC.

A memory increment interrupt is handled the same regardless of the
state of process exchange. The address presentee by the controller is
used as the 16-bit wcro number in segment 0 (I/O segment) of a 16-bit
memory cell to be incremented. If the counter does not overflow
C-1->Q)* the u-code simply returns. With process exchange off* the
return is always to the fetch cycle, with process exchange on* the
return is either tc the fetch cycle or the dispatcher*
where the interrupt was detected.

••••-. .-:.v*

page

"csequent EQR interrupt will then be treated like any other external
AOL ruot. Pioure 8 is a detailed flow chart of the external interrupt
.i<\er.

I. Special Instructions CIRTN' INOTIFY)

Phantom interrupt code has two options for the actions it can take. If
tire servicing required by the interrupt is very simple* phantom code
carr completely process the interrupt and return to the dispatcher- If
the servicing required is more complex* the phantom code must turn off
the controllers interrupt mask and NOTIFY the remainder of the IRC.
In the first case* PS and KEYS must be restored from PSWPS and PS'WKEYS
and: then the dispatcher must be entered directly. Since PS cannot be
restored in phantom code (the F-counter will point to the instruction
irr phantom code) and the dispatcher cannot be entered directly (no
such instruction exists)* the special instruction* IRTN* a 16-bit
gp^eric* is executed to perform these functions. After entering the
d\ - patcher via an IRTN* the dispatcher dees not know that an interrupt
accurrea.

Irr order to NOTIFY a process* phantom code must insure that FB and KEYS
are restored before issuing the " NOTIFY. The special instruction*
^IMQTIFY* performs the restore and then does the NOTIFY. As NOTIFY*
•f~V*rIPY is a three-word generic with two flavors* INGTIFYS and IM0T1FYE
*\ v. e the beginning of list option has bit 16=1 and the end of list
>A^-i;en has bit 16=C in the opcode.

Phantom Interrupt code can issue a CAI in one of two ways- Either an
explicit CAI instruction may be issued or the IRTN/INOTIFY instructions
can issue it. Bit 15 cf the IRTN/INOTIFY instructions is interpreted
as fallows:

Bit 15 = 0 da not issue CAI
1 issue CAI

lit all* there are four INOTIFY instructions as follows:

Name Bit 15 16 Function

INEC 1 0 End + CAI
1NEM Q 0 End + no CAI
INBC 1 1 Beginning * CAI
INBN G 1 Beginning + no CAI

Figure 9 is a detailed flow chart of the IRTN and INOTIFY instructions.

V '. Faults

Js- aults are CPU events which are synchronous with and/ in a loose sense/
Reused by software. Eleven fault classes have been defined for the
P-40G. Several cf these classes are further subdivided into distinct
types. Cf the eleven* three are completely new for the P-400 and* of

Page 1G

the' other eight* three have expanded meaning when in P-4QG mode. Th<
eleven fault classes and their meanings are:

Fault P-40G P-3QC

RXft Restrict mode violation same
Process Abort flags vera .HE. G fo.A.

in PCS on dispatch
Pace Page Fault CPage not in same

memory)
SVC N.A. Supervisor Call
UII Unitrpleraented instruction same
ILL Illegal instruction same
Access Violation of segment Page write violation

access rights
Arithmetic All FLEX + 1EX (Integer FLEX

Exception)
Stack Stack overflou/uncerflew Proceoure Stack(S-fleg)

Underflow
Segment 1: Segment " too big N.A.

2: Kissing segment (SOW N.A.
fault bit set)

Pcinter Fault bit in pointer set .N.A.

The fault handling mechanism consists of two data bases and the CAL [y
instruction. The u-code is in turn divided into a. set ef 'front-ends-^
far each fault class and ,a eemmon fault handler.

1 • Data Bases

The fault data bases consist of the fault vectors and concealed stack
in the PCS and the fault tables pointed to by the PCS vectors. Figure
1C shows these data bases as well as the mapping of P-3G0 faults t o ^
P-4GG faults. Also shown in this figure is the differential action)
taken according to fault class (e.g.* what ring to process the fault
in) end the set up the u-code 'front end* must do before going to the
common fault handler.

The underlying philosophy of the four fault vectors is that while some
faults may need to be processed by ring 0 code* others may be
adequately handled in the current ring of the faulting process. The
vectors are in the PCJ3 to allow different processes to have different
fault handlers. Fcr example* process A may wish to use a system fault
routine to handle pcinter faults (dynamic linker) while process S may
wish to define its own algorithms for resolving pointer faults. Notice
that it is always possible for a 'current ring* fault handler to call a
ring C procedure if the need arises. Note also that page fault has its
own vector despite the fact that ring G is entered. For the special
case of page fault* only a single* system-wide orocessor will be use •
and all PCS pave fault vectors will point to the same place-

The concealed stack* also in the PCS* is used to allow fault on fault

Pace 11 Pc-T-iJi

ondi ticns.
^>"\e prccessi
jf^ither fau-lt
srack contains
well as a faul
and a fault a
siust have alio
sequence of'
might ce: Pci
Segment fault
before any so
fault enters r
original link

For exa
ng a sec

of any
the P8

t code (
caress r
cated su
fault en
nter (li
-> Paga
ftvare f
ing Z* s
fault is

s p l a y
nrent

t y p e
and k
t o d i
i f ap
f f i c i

f a u l
rrk) ' .
f a u l t
a u l t
o a t
to b

it.is q
fau It .
is page

eys (KEY
stinguis
propriat
ent fram
t that c
fault ->

Note
handler
least a
e proces

u i t e
The

f au
SH)
h d i
e .
e s t
an o

Sec
t h a t
i s e
f i v e
sed

possibl
on ly fau
It - Sac
of the
fferent
The stac
o handle
ccur in
raent fau
this pa

ntered.
-level s
correct I

e to get
It which
h frame o
fau Lti ng

types wit
k itself

the lo
rino fl­
it -> S
rt i cu lar
Alsov th

tack is n
y-

a segm
cann

f the
proc

h i n e a
is c ir
noes t
Such a
tack
sequen
e f i rs
ecessa

ent fault
ot cause
concealed
9dure as
ch class)
cular and
possible
sequence
fault ->
ce occurs
t segment
ry if the

The second data base consists of four tables^ di stinct
pGinteo to by a PCS fault vector- £ach entry in the table consists o
fcur words of which the first three must be a CALF instruction. Only

each

the page fault table must be locked to memory, and only the ring 0 table
jfst be in a pre—cefined (SOW exists) segment (otherwise.* segment
fault r:ight recurse infinitely)- datura I ly^ . the ring Q tables as
as the PC5/ is carefully audited by ring 0 procedures-

well

c . C*LF

CALF instruction has tao major functions. First/- Co avoid holding
f interrupts for too long^ the CALF instruction defines a restart
int in fault handling since it has a PS Ci.e-y it is a macro-machine

instruction). As a results it is quite possible to susoerid a process
in the middle of getting to a software fault handler. S.eccnd^ it
allows a straightforward mechanism to simulate a procedure call from
the faulting procedure (at the instruction causing the fault) to the
fault handler-

The ins
CJnrd w
pF̂ • >
the
(en
ent
(PR
p la
a s
mcv
CAL

t rue
ores

cedure
fau

ly
er c
TN)
C 6 d

t ion
are

call
It hanol
the
4V a
ins

in t
t ancard

ec
F is

from
ice

?E

it
a

• t
er1

an
ddressi
true
he f
pre c

th
nt i c

tic
au I
edu
o

al

self is a three-word generic
32-bit pointer to the fault
he PS and KHYS from the cone
s stack frame along with th
d KEYS have been changed to
ng mode) to be used by the
n. In addition^ the fault.
t handler's stack as if they
re call (PCD instruction.
concealed stack it is popped
to PCL.

- n
hand
eals
e o
poi

stan
CO

whi c
ler-
d st
ther
nt t
da rd
de

were
1 «.

I
er t
n a I

h the
To s

*ack ar
base

0 the
p r c c e

and a
gument
he inf
1 ctfte

secc
imul
e p I

re
CALF
durs
ddre
s pa
orma
r re

nd and
ate the
aced in
gisters
and to
return

ss are
ssed by
t i on is
spec* Sir

Fault H a n d l e r

[;.. fault h a n c l e r is a u-c e d e r o u t i n e that is e n t e r e d from t he various

rault class? 'front e n d s * a n d / b a s e d on p r o c e s s e x c h a n g e s c d e / either
imulatas a P-3GC t y ^ s fault (J S T * t h r o u g h s e g m e n t C fa u l t v e c t o r s) or

Z s r f G r m s the P-4GC fault p r o t o c o l w h i c h i n c l u d e s s e t t i n g up a concealed
stack frame/- s w i t c h i n g to 6AV m o d e / a nd det erm i n ing * on the b a s i s

Page 12 PS-T-232

•^

information provideo by the 'front end1/ which fault vector to use an'4-
settinc PG to point to the proper CALF in the fault table- Figure 1
is -a detailed flow chart cf the fault handler and Figure 10 contains a
table of the necessary setup performed by each fault class 'front end*.
Note that for F-3GG faults* the full RP is also saved
scratcn register FSvJPS and the machine •*« inhinitan •*«».
If in Sine C.

is inhibited for
in the u-code
one instruction

Checks

Checks* unlike faults* are CPU
are not caused by* normal
events which are either
fatal (e.g.* aissing

events which are asynchronous with* and
instruction execution. Rather* they are

invisible (e.g.* an SCC corrected error) or
memory aodule) to the currently executing

srocedure and perhaps the CPU entirely (e.g.* aachine check). Checks
essentially represent processor faults as cpcosec to process or
procedure faults. Four check classes have been defined as follows:

Check P-4QQ P-3QQ

Pcuer Fail
Memory Parity •

Machine Check
Pissing Memory ftcoule

Power Failure
SCC corrected
SCC uncorrected
Fatal CPU error
Memory aodule does not is:

same

Memory
same
.same

Parity

Unlike
to be
ccnsis
and KE
h sader
(proba
well
going
base*
to he
shews

f au
susp
ting
YS <
)
bly
as
to t
thre

rip
the

Its which can be stacked and interrupts which cause a process
ended* each check class has a single save ares (check block)

of eight words in the interrupt segment C34) in which PS
high and lew) are saved in the first four locations (check
and the reaaininc four locations contain software code
a JSP). Figure 12 is a picture of the check data base as
a description of the necessary u-coce setup required before
he ccmaon check handler. In addition to the memory data
e 32-bit registers are used as a diagnostic status word (OSw)
a software check handler sort out what happened. Figure 13
format cf the DSW.

Check reporting (traps) is controlled by the two low order bits in the
oodali (KEYSL)- The possible sodes are:

MCM" * G
1
2

no reporting
report memory parity (uncorrected) only
report unreccvered errors only
report all errors

The check trap can result in two possible actions depending upon the
type cf check that occurred znd the type of u-coce which was trapped.
If the traoped cede was either D#x* PIO* or external interrup
processing (unless the error was a machine check for R CM parity)* or it.*
the check was for an £CC corrected (ECCC) error/ the
ena-of-instruction flag is set* REOIV is set to the proper

-o ffset /vector/ M O v is set to G (except 5CCC which sets it to 2) / and a

._ '—.ode RTN to the trapped step is executed- In this y a y , the 10 bus is

r ^ . a y s left in a clean s t a t e . la all other c a s e s / the check to

-\ rtware occurs i.nmedi at s ly. Figure 1^ is a detailed flow chart
sr.owina the cceratian of the check t rao h a n a l e r s -

rn REGISTER FILES

7ne PRI?S 4-CG/5GG certains four distinct register f i l e s . Sach file is
J*srther divided into halves/- each 32 locations (registers) long/ and
1 ch 1c cits v i a e - One half is r^iQrr»d to as the high half and the
ether as the lew h a l f . Since botn halves are addressed together/ each
register file contains 3 2 / 32-bit register or 6^/ 16-bit r e g i s t e r s .
The register f i l e s / numbered frora G/ are used as f o l l o w s :

Trti s I
files/
h av e t
a f 32

the
»"5

regi st
p^er
I gure
r s g i s t
segrsen
the mo
m c c e /
H £V = ft
for t h
cecals
Switch
only
s j. e c i f
"his

• *' : o d e
s"~' -arse

r?4DC /
. « s e I
the u-

R FG
RF1

. KF2
R F3

aycut o
thus a

he sa.«e

channeI
P-3GQ

2 and
er in R
R F1 r
1 c she

er sets
t n u n b
dais (K
tc se

alter i
e nodal

It
e c / t c
the D i
i ed by
field
seratc

/ only,
5 G C / t h
e ct s t h
code w i

u-code scratch and system registers
3 2 D f* A channels
User register set
Us er register s et

T r eg
dci ng
int e
regi

0 '* A r
'23,

F1 to
egist
w s t n

i s
T

rn
st
eg

c
er

5 c-3 <R?
er o
£YSL*3
t CW
t the
s / on

is
ccpy
spa « c
v. •> e •»

can
h and
2 a

e C?,S
s r eg
11 on

«: /

re

ly

th
he
hr

sp
D

nd
i

is

ly

te r T I

cur ne
al for
er s .
isters
In t

hanneI
s repr
intern
R F 3) . .
the Re
It is

ZR in
sftsr.
the c

h e r e f o
e coda
r s w i
ee bit
an uo

i e Id rn
t e r s e
lock

I e s a 11 G w s
w user regi
.•sat and the
Channel reg
52Q and 32

his «ay/
register *

esent addit
al structur

Note that
ady List/PC
ne cessary/
ALL regist
A It hough

urrent regi
re .necessa
Is into the
tches regi
field labe

tc eight re
er register
re current
ust always
i (as i f G
aw 3 U I I .

easy exp
ster set
0 iM A reg

ister '2
1 - Chan
the fr.app
36/ rnapp
i o n a I D H
e (usage
all user
5 ssgsien

before
e r sets
all regi
ste'r sat
ry * uh e

ne* r
star s e
lea 'CSS
g i s t e r f
sets s r

ly i.v.ol
have bit
and 1 ws

ans i on
s. Al
ister
w M i >. n

ne I re
ing i:r
ed to
A c h a n
) cf

r egi s
t (O'wN
e n t e r i
to the
s t e r s
(CHS)

never
eg i st e
- s .
* -i -i 1 1

i les /
e nu.7»c
saents
9 off

re t h e

to
I u
f i I
in
gist
o ce e
*3c

e igh
e r rz _ i
s irap ly

e rl is

ne I
RF

ter
ERH

*' s
pr

ets
c

er * d
CS f 0

a nd
over
and

s ets
and

re ces
per v
cent a
n t a i n
ister

3

*-
u

C O

3

s e
CRS
the
but
ere

r.u

i s
^oda

c - O a

from
Thus

t I u
b a r s)

I

C
c e
Is

ster s
cans i

cuivat
is Dap

each e
37 -
he P-3
the u
n t a i n
cell
e x c h a

u e and
a c

the v a
sets
u r ren:
f i r.eri

S i

us ed
2 - 7

/
en / anc

In fa

ter
ets
sts
ent
ped
ven
All

s er
the
for
nge
*• r>

ell

are
ly/
and
n ce
for
Of

the
bit

Pace 14 P£-7-232

d i r e c t r e g i s t e r f i l e a c d r e s s i n c (n e t usi.- .c C3S) -is a c c o s c I i s h e d e i t h e r ^ . .
- i t h t h e LOUS/STL?, i n s t r u c t i o n s o r v i s t ins c o n t r o l p a n e l . The S s g i s t s
F i l e s a r e o r s e r s d s e q u e n t i a l l y w i t h an a b s o l u t e a c c r e s s c f G a d d r e s s i n g
." * G - r : » g i s t a r C < u - c c d e s cpa J c h / s y s t era f i l e) / *4Q a c d r e s s i n g
S F T - r e e i s t e r C <D.'4A f i l e) > - *1GC a d c r e s s i n e a ? 2 - r e c * i s t e r C (u s e r s e t 2) -
anc M&G a d d r e s s i n g « r 3 - r e c i s t e r G (u s e r .set 3) .

a s s i s e , each r e g i s t e r nasi a* u s e r s a p p p e p p i a t e y t h e PRXMS-3CG mods
c a c c i n c f ros t a c c r e s s t r a c s to r e g i s t e r s (e . g . * t h e X r e g i s t e r i s t h e
h i n a h a l f c f 'JS7) •

I V . CC-NTXCL ?ANEL

The c o n t r o l pa r .e l f o r t h e ?-*CC/5GG i s t h e saae p h y s i c a l p a n e l used f o r
t h e P-1GG/2GC7 3GC - I t ' s f u n c t i o n a l i t y was enhanced by i r r . c r c v i n c t h e
u - c e c e i n t h e 0 ? . A l l s w i t c h e s and s e l e c t o r s s n e r a t e e x a c t l y as f c r
t h e r—3CG w i t h t h e e x c e p t i o n o f t h e ' sense s w i t c h e s i n t h e uc p o s i t i o n -
? i c u r e 17 i s a c i a g r a n c f t h e f u n c t i o n a l i t y o f t h e s w i t c h e s . N o t i c e
t h a t w i t h a l l s w i t c h e s down.- any FETCH/STOSE o p e r a t i o n s a r e t o / f r o . r .
s s a c r y - s a c o e c . £s I one as s e g m e n t a t i o n s c c e i s n o t t u r n e d cr . / cap-pen
SPC a b s o l u t e sr° t h e s a s s / t h u s p r e s e r v i n g c c - e a - i b i I i t y . I f SS- down
were s e s o l u t e * - a c c r e s s t r a p s c o u l d n e t o c c u r and w o u l d t h u s be
i n c c c t c a t i b l e . N o t i c e a l s o t h a t S35-1c i n t h e uc p o s i t i o n changes
.•neanino c e c e r . c i n c uccn S S i - v ihen-ssacoec/ a l l 12 s w i t c h e s srs read as a
I i - C i w

o r d e r b
r s o i s t s

numcer • h^n a c - s c l u t e * SS11-1 e-
s o: cc-cnt physical. sccress -fM i c a c a r e s;

the o h * o .n
any ?—3D'

- a e r. * '

11 sense switches should be placed in the cewn position anc
twe-en G and *37 s p e c i f i e d .

— H T : G / 5 G C registers are C Z o < c o e s s e c ey r a t s ~nc iii . ; n en • 5c is oewn^
the low order 5 bits of the address sr$ used to access 32-bit registers
C-*37 within CRS. If 222 is raisec* the full 7 bit accress is used tc
access any recister in any register f i l e . The acdresses/- as shown in
"ieure 1o, are C-'37=u-ccc5 scrat c h / s y s t e m *^C-,77=:i

,-1.;/ l1 G C - ' 1 3 7 ~ J s er
set 2'y sr.c *1 tG-'l77=U sen set 3. SSA is used tc access either the high
hal"? Cup) or the low half (cewn) of the selectee r e c i s t e r .

before the access* a - S Z? I y as Tor memory a c c e s s e s v» r a p a r o u n d w i 1 1
o c c u r on t h e a c p r c p r i a c e nust'eer c f b i t s * s i n c e any b i t s c f h i g h e r o r e s :
a r e i g n o r e s f c r t h e a c c e s s -

The c o n t r o l p a n e l da ta r e g i s t e r i s TR2K and t h e a d d r e s s r e g i s t e r i s
" S o . Upon e n t e r i n g t h e c o n t r o l p a n e l r o u t i n e ^ 8? i s saved i n 753 and
(x?> i s savec i n 7?.2H. I n s c o i t i c n * t h e keys CX£y$K) a re u s c a t e d t o
r e f l e c t a c c u r a t e l y t h e l i v e k e y s - T h e r e a f t e r . ' 73 3H i s n e t a l t e r e d by

— — • — •« i -».a»iai i * e s i - 5.3 S?H i s a I w a v s r s " 6 " c ? r 2 d . H s w s v j r / en
u p c a : e ?.?H and :<£YS i s usee t o u c o a t e a l l t h s

?su 11 * s i r c Ie s t esP i nc c sn chance seo—ent s as w e l l as keys

w-. e c e n t r e 1 , can e l i t s e
e x i t / ? 2 K i s used
.1 ey s 4s s
anc ci c o a l s . •• * cu r» fc ~ s a oetai.ee * »o» en
rout i n s .

<_.(•.! V I. an

. .T ff C n i, y — — W » ** ' e n t r o r, panel entry p r c t e c e :»

cents* nine - in r — z •« u ~ o a e * :ciioy"nc peats

http://oetai.ee

Page 15 PE-T-232

"*V~ RP: address of "trapped* instruction
f P9H: SN of 'trapped* instruction

KEYSH: proper keys
TR2H: (data) 0
TR3: (address) C|0

TR2L: addressv in segment G* of the 'vector* containing G

V. CP TIMER

Resolution = 1C24 u-sec

Turned on by DISPATCHER before dispatch-

Turned off by:
WAIT after/during save
OISP before changing CRS

• Cn tick u-code increments the interval tiraer (TIi*ER) in Rr(CRS).
when that overflows* bit 16 in the PCS abort flags (memory) is
set to cause a process fault-
It is the responsibility of software that resets the interval
timer to maintain the elapsed timer-

FFA

w*
Q S j * i =03,,*

L £ 0 L I 6 J
cnr A

eni ^ ^

3 —
„ m: ft

I-

• \

Z I 7Z
- a

-~—r-
Zm. »

C 6
1 ̂ ^ • «•

I *?r !i lever l •"• "z

d\.

L——^̂ . , I

D lr.Ii

» ni<

PCS
i : - ' i 3

j eve i

"FCa:

Ready L i s t : AH pointers are. 16-bi t word numb,9_C Rff•nters w i th in the FC3
segreentv "The -SelgmeMvr" nuniiser is;%hits,'in^d in the high por t ion
of the CWNE#poin$e¥;'w!^h'tftveacn ' r o i s t e r se t .

A l l PC3 s t a r t addresses must̂ fa© eve|i CbJ.t 16 • 0) . Tne end
•of the ready"! IW* i s ; marked with. a. cQL entry. » I .

FIGURE

<~SJ

WAIT LIST STRUCTURE

y

4

Sensphcrs

Counter(=2)

SQL

(^jp*

'.0£K Figure 2.

Process Control aicck (PC3)

0
I
2

6
7
8
a
2° 21
22
23
24
25
2<5
27
28

1?
$
33
3£
3D
»
33
39
40
41
42
43 J§
46
47
48
49
.50
51
52
53

ii
5o
56
57
58
59
60
61
§2

wLSiM (0«cn reaay

eve i
i ;*u

1ST)

Menr? K | » G S

Reserved

Elapsed Timer

DTAR2

DTAR3
i nrerva\ i\mer ut vei

yagan/Bd

save mas'A
j^gyc

GR0

GRI

6R2

GR3

6R4

6R5

GR6

GR7

FF0

F?L

PS

S3

IS

XB

FV0

P/l

Reserved

FV3

— PFV~
concea i ec STac* r i rca i
csnggatsg STPgK *>-x
concsa i eo ST«CK i».s

Concea I ed Fau f t* Stack
(6 words/entry) i

i
2
3'
4
5
Q

7
10
I
2
4.
6
7

20.

5
5
6

zl
I
2
3
4

I
40
I
2
3
4
5
6
7
50
I
2
3 6

6l
I
2
3
^
5
6
7

70
1
2
3
4

.5
6
7

^%\

~N

• V

order fixed, locations
flexible depending upon
save mask

\

^

^

Flqure 3.

-/**
i^k

saved i n. reg i 573 r
f i l e

V y

fcoun i"K:ount) + 1

>

locate pos i t ion fc
new FC3 in Wait Li
using P r i o r i t y
Queuing Algorithm
where, fo r equal
p r i o r i t i e s , aueuirs
is FIFO

((t l))=PC3 '
Ctj3=CFC3+I)
(FC3+I)=(t2)
(B0L)=(t[5

FC3 to WL predecessor
RL successor
WL successor t o FC3 '
RL successor t o RL

Remove from Ready-
L i s t (RL) and add
to Wait L i s t (WL)

WLSN and WLWN
t o FC3

Turn o f f C? t imer

Short
Save

under mask/

level A-1 eve I S J f l ^ ^ v e

>£:

\

V FOP FF3 into FPA

/

FC3A=Feaa
PC3B=0

Figure 4.

-»•• -*--••

On Entry, RP is saved
in register file

(N T F Y \
Entry front r
- IMOTTFY J

Push
PPB-FPA
PPA=new

C NOTIFY

caunt^count-l

(EOL)a(CEOL))

yes

OP code Bit 1 6 = 0 end .
I beg i nn i nr

U;

ves FsTCH

Remove from Wait List

*Fcr NOTIFY to Seginning, the
n<* in the level check beccmes

*/

o^J iSS ^1 level E=new

no

yes

FCS&snew

(E0L)=FC3

\

Add to
\ Ready
' L is t

CPC3+!)=(EOU
<B0L)=PC3

s

Figure 5.

R? anc i :ve Keys are
Cava l i d '

i«i te: A l l i n te r rup t
• - iks resu l t in a return

fv .^ h**- top of the d i s -
P^ 0* - '

V y

ENB
interrupts

allow interrupt break
(insure RP and live keys are valid)
(set ID(CRS)-ln dispatcher flag-*l)

(t}=(level A)
iurn orr
CP timer

code
wait for
Interrupt

V idle loop

SO(CRS)=0

Setup keys andl
Program Counter
Turn on C? timer

FETCH

V

Restore DTAR2,
DTAR3, TIMER,
and KEY. S

i Rest;

Fintira 6.
^

fetch save mas* / Stat

I
Restore GR's,
FPfs and ER's

SAVE
under mask

N

r\
*The regis ters to be
saved are a parameter
passed as a s ta r t l es P,F
address in (TR0,L)

*-

Save timer
and Keys

Save mask=0

shift save

yes

set bit in
save mask

•Jz
store reaister

into PC3

JSOCCRST

©

Ficure 7.

U

V f n t e r r u p t

V

Input
Keys

IENB
1(400 ns)

(Interrupt Enable)

yes
Generate

Additfona
OeIav

Input" Address =KEYS ySWK£YS=K£

FSWF5=RF no ^XiMemcj

OT7

F3UU7

ves. (address}=
(address)-5-1
generate ECR

\ y

on
(P400)

RP=4| address
64V

Ring 0

T

address=f63
CAi

CPN (Clea:
Prf-ni

iCPN (Clear Prl-net)

CPN (Clear
Prl-net)

.±_
((address))=RPt

RPK=0
pPL=(address)+|

\'

w

NH

E • /̂i • »-<a Q

— II ' —>•

c IRTN

letch=0

reset

seT CHI

M/

P8=PSWFS
KEYS*PSWKEYS

C I NOTIFY
M
latch-

i

J

O0:Code Bit 16=0 end
I beginning

Qp.Ccde Bit 15=0 no CAI ^)
I Issue CAI

y

Figure 9.

A V

52
53
54
55
56
57
58
59

— FV0 —

— FVI —

-Reserved —

— FV3* — j .

61
62-

%

•y Ji^O

A V

[}

PFV

FIRST
NEXT
LAST

Ring 0 Fault Vector

Ring I Fault Vector
» fault

5*4

Ring 5 Vault^Vector

H Fags Fault Vector (Ring 0)

•v

Fault Table
CALF

32-bit AP
Fault #0

\

F8H
PSL

KEYSH
FCOOEH(ll)

FADDRH
FAD0RL(I2)

PEH
PBL

KHYSH
FCCOEH(II)

FAODRH
FAD0RLCI2)

next
^ava? lab le^L

rrame

ast frame

±*

CALF
32-bi t AP
Fault #1

Notes: Fault Vectors contain approoriate rina numbers
P300 Vector address » Fault' $ + '62

Fau I ts

Entry to common handler (FAULT)

RP « proper RP to save (backed up if necessary)
FCODEH(ll) = fault code (if needed)
FA00R(!2) = address (if needed)

FCODEL = fault £*4=P400 fauIt.tabje offset
LATCH6 = 0 fault •

I page fault (LATCH7 must=0)
LATCH7 » 0 go to ring 0

I use'current rina

Fault
RXM
Process
Pace
SVC
Ull
ILL
Access
Arith.
Stack
Segment
Painter

§
0
1
2

4
'10
Ml
'12
M3
M4
'15

offset
0
4

'10
'14
'20
'40
'44
'50
'54
'60
'64

vector
'62
'63
!64
'65
'66
'72
'73
'74
'75
'76
'77

FCCOEH(II)
-

abort flags
-

•-

current RPL
current RPL
code
cede
code
code
code

FADCR(I2)
address

-

address
-

address
address '
address
address
address
address
address

Rina
current

0.
0

current
current
current

0
current

0
0

current
of pointer

Save
bac
cur
bac
cur
bac
bac
bac
cur
bare
bac
bac

\jr.
Figure 10.

On Entry:
RP • proper RP to save

FCCOEH(M) = fault cade
FCOOEL = fault?**
FAODH = addressCSN)

FA0QRUI2) = address (Y/N)
LATCK6 = 0 fault

I page fault
LATCH7 a 0 use ring 0

I use current ring

f FAULT j

INH1

. .

vector =»
'62tfaults?

• *
((vector))=RFL

P5WF5 •=«?

off
CP300)

INPUT
KEYS

on
(F4C0)

<ti)=»(IS3T)
Ct2)=(NEXT)

SAVE PSH, FSL
KEYS, FCCOE and
FAODR in con-
cealed stack

)+

RPK«0
RPL=(vector)«H

* *

FETCH J

<t2)=-rs5_
»NEXT)/^

P°
I

ves

* /

(t3)=(FIRST)

<'

(1,0)

(t3)ssFV(rincif)

« •

Page Faul•)
(Ring 0)

(0,1)
(current r i ng) _

(t3)=PFV |

RP=((ts) >Wau I T§*4
1

<r Kays=64V

Figure 11.

Software check catchers reside in the Interrupt segment (4) and are 8 words each*
The first 4 words are used as a PSW save area as:

Interrupt Segment (4)

'200
1
1
3
4
5
6
7

r

—RETT
"""M00ALS

'270
I
2
3
4
5
6
7

'300
I
2
3
4
5
6
•7

'310

TUT"
P8L

code

rty-t

MOOALS

code

PBH
PBL
KEYS

MOOALS

code

Power Fai

T
PSL "I

j Memory Parity

KEYS
MOOALS

code

Machine Check

The check offsets and correspondi:
P300 vectors are:

Check
Power Fa 11
Memory Par.
Machine Chk.
Missing Mem.

Offset
'200
'270
'300
r3t0

Vectci
'60
'67
'70
'71

In ail-cases, the saved P3 is the
current F9 when the check cccurrec

Entry to common .handler (CHEGO

RED IV =XP400 offset
P300 vector* (offset-'20C)

LATCH5 = 0 RP is proper RP to sav's
= i proper BP is in PSSAVE
(Note: FSSAVE=0 Implies in

dispatcher)

FSH Missing Memory Module
P8L

Figure 12.

01 agnostic Status Word COSW)

60 b i t s , Registers *34 r135V36 (named OSWRMA, 0S7/STA7, and Q5WPS)
Bi ts] ,32 : OSWRMA

33,43: 0SWS7ATH Valid on a l l checks except Power r a i l
49,64: 0SWS7A7U as fo l lows:
63,80: OSWFS ~YN

1
33.

C
I

2 3
34-|33|

M
C

M
P

4
36

M
M

5 6 7
37 | 38 | 39

Machine
Check Code

>

•S | 9 10
40 J 41 } 42

ff
C
M

I

e
IB

C
C
u

E
C

c
C

11 12
43 I 44

Euo
Inv

13
45

(4 15 16
46 | 47 | 4a

RP Backup
Count

0
M •
X

10
Bus

DSWS7A7H

1 2 3 4.
17 IS 19 20
49 j 50) 51 } 52

5 6 7
2! 22 23
53 | 54 1 55

a
24
56

9 10
25 26
57.| 58

II 12 13
27 23 I 29
59 I 60 I 61

!4 15 T6
30 31 32
62 I 63 ! 64

RMAResrj.

I n v p l
Syndrome *3d Reserved u-Verify t e s t §

0SWSTA7L

33: Cl=Check Immediate
34: MO*Machine.Check
35: MP*Memcry Par i ty (2CC)
26: MM*Missing Memory'

37,39: Machine Check Code
• 0=*Periphera! Data (EF0) Output

r laperlpheral Address CSFA) Input
2=Menory Oats CEM0) Output
3»Cache Oata (RCO)
4»PeripheraI Address C5PA) Output
5=R0X-5F0 Input
6*Memory Address <SMA)
7»Register F i le

40: Not RCM Pari ty (Reset f o r RCM- Par i ty error - XCS only)
41 : ECCU=»E£C Uncorrectable zrrar
42: ECCC=£CC Corrected error
43: Eup lnv«RP backup count (±4-46) inval id

44,46: RP Eackup Count-eaaunt RPL CDSWPS) was incremented in current ins t ruc t ion
' 47: CMX, set I f check occurred during CMX

48: 10 Bus,, set I f check occurred during CMX, PI0 or Interrupt u-code
49: RMA Inv=OSWRMA invaI id; (Possible from ECOJ and MM only)

"50: Reserved
51,55: ECCC Syndrcme«5 syndrome bTt.s on a corrected error

56: Mod #=tow order address'bi t of memory module causing the er ror
57,38: Reserved
59,64: u-Verify t e s t § set on f a i l u r e during Master Clear or VIRY inst ruct ion

Validity:
AIways :I-33,43,47-48,59-80
If bit 34 set :37-40

35 :41-42,56 If bit 42 set:5l-55
36 :56 - •

If bit 43 reset:44-46

It is the responsibility of the check handling software to clear the DSW after a check
has been precessed.

J

Figure 13.

V-L VwiuV K

I
„X

(

save RO
REOJV='3I0

INVCI •

I
CHKDIN
CMX

\/

read memory
module §.

i
set OSW

status bit:

r

/ CHKDIN

\

V. *S

save RD
REOIV=f300

"COT

^ V

•X*

save RD
REOIV»'270

N
ccde,RCM,

CMX

CHKDIN
ECOJ, CMX

read memory
module #

set OSW
status bits

I
sat OSW

status bits

v_y

fr ves

no (ECCC)

(CHECK \ n o y^ fCBUS

JJ.
read ECCC
syndrome

(DMX or PIO or Interruot)

read RP backup
count and save
proper RP/F3SA'

read appropri­
ate data bits

set EOI flag
restore RD

^L
MCM=2

S.
/ R T N \

U1
Figure 14.

On Entry: RP*proper R? to
save
RSOIV sp400 offset
Machine Check .Mode set *>

FCCDEL3

REOIV/2-MI0
»<0FFSST-?22£)y2

*The actual calculation of P300
check vector is as follows:

In CHECK: FCOOEL » 0FF5ET/2-'110
» (OFFSET-'220)/2

in FAULT: FCOOEL * (FCOOEL+'3!0)/4
• FC0DEL/4*'62
= ('(GFF5ET-,220>/2)/4+,62
= (OFFSET-'220)/8+T62 .
a (OFFSET-I200-t20V8-?-'62
* (OFFStT-'200)/8-2+T62
« (OFFSET-'200)/8*'60

SAVE F5H, PSL,
KEYS, and MCOALS
Cbefore INH5 in
CHECK header

Keys=64V, INH

RP»4J (OFFSETS

^SV

.")'

This circuitous calculation is used to

avoid dividing a negative number on a

power fa iI check-

Note: '200 (Power fall offset)-T220 * -'20.

Figure 15.

a
fr
^,-
^

V ^

TR0
TRI
7R2
TTQ
TR4

̂ £

FGT
KL
121
ES
BC
IS
PS
ET
Z2£
2l;-
2Z
22,
Z *

Sr
2T
in:
i r
3T
*""S"

:•.•;

7R7 .
RCMXl

[RCMX2

RSG7I
RSGT2
RECCI
RSCC2

ZERO
FSSAVE
•

\

>
•
FSMPS
FSWKEYS
FPArPLA
FrS:FL3
HSWRMA

r -, iWSTAT

:L,-̂ F 10SWF9

-
-
-
-
-
-
-
-
•*
-

RA7WPL
-
-
-
-

RED IV
ONE-

-

-
••

FCSA
FCSS .

-
-
••

I I b i w i

0
I
2
3
4
5
6
7

IO-
II
12
13
14
15
16
17
20
21
22
23
24
25
25
27
30
3t
32
33
34
35
16
37

(20)

(223

(24)

(25)

(30).

(32)

(34)

(36)

(21)

(23) .

(25)

(27)

(31)

(33)
•

(35)

(37)

40
41
42
43
44
45
45
47
50
51
52
53
54
55
55

• 57
50
61
62
63
64
65
65
67
70

; 7 i
72
73
74
75
76
77

w-= i 1 I

0
I
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
25 .
26
27
30
31
32
33
34
35
36
37

rut_*i 1

GR0
GR1
GR2CI,A,LH)
GR3(EH)
GR4
GR5(3,S,Y)
QR6
GR7(0,X)
FR0(I3)

-

FRK4)
- (6)
F3
S8CI4)
L3(16)
XS
OTAR3U0)
0TAR2
0TAR1
OTAR0
KEfS
OWNER
FCCO£(1 I)
FACCR
TIMER

- ' .

LOW |

-

-

- (2 , 3 , LL)
-(EL)

-
-
«*

- •
-
-

- (5)
-

-

- (15)
- (1 7)

•
-
-
-
«•

(mcdaIs)
-

-

- (1 2)
-

.

nccr 1
100
101
102
103
104
105 .
106
107
110
111
112
113
114
115
ire
117
120
121
122
123
124
125
126
127
130
131
132.
133
134
135
136
137

r.C

l<
h
h
l<
1*
M
N
U
1;
1:
If
1;
IS
15
15
15
16
\6
ic
16
16
15
16
15
17
17
17
17
17
17
17

117

KEYSH

l l 2 f 3 l 4 J 5 l 6 l 7 alsii dlflGlBIJ 5ll 5? .IS

$ K*

0 L A d r
I Mode
N

Airv
ft

r
2

•̂*

£,.

Mode
I6S
32S
64R
32R
321

64Y

I
LjElC
EjXlLiE

FLEX=0 a l l o w s FLEX F a u l t s

I

E
N
e

2I3U
V
1
M

KEYSL (Moda

5 l 6 l 7 l a l « ! f 0

CRS

Is)

f 12i[j4$3ri5

M
I
C

P
X
M

S
E
G

1

NO

ENS: Set=enafafe Interrupts
VIM: Set=Vectcred interrupt mode
CRS: Current Reg j s tar Set
MIO: Set=mapped""l/0
FXM: Set=Procsss Exchange Mode
SEG: Set^Secroentatfcn Mode
MCM: M a c h i n e C h e c k Mode

i Dispatcher
"Swf̂ Jave Done ^ Figure 16,

SS! SS2 SS3 SS4
/

up

town

realStar
up

down CRS

memory
up

down

absolute fci gh hal f

low hal f

absolute

ipped

\
SS5-I6

*
SSI 1-16

. ^ \
/

£ hyslcai Addres395-50

Segment #

Notes: With all switches down, control panel works exactly as for the P-300
following either a Master Clear or a HALT If not running in segmented
mode. It is necsssar/ to make mapped memory accesses if address traps
are tc* be generated. If running secmented, memory accesses will be
mapped to- segment 0 unless an explicit sacment number is entered in
SS5-I6. •

Reg I st&rs: Reg I ster address is in address rag i ster (sw i tches down)
For CSS, only low order 5 bits are used;for absolute,
only low order 8 bits are used Y+l CSTCRS/FETCH) operates
exactly as for memory with the address being pre-incremented.

Null Vector: In P-300 mode, if an external interrupt, fault, or check attempts
to vector through a memory location containing a 3, the following
action is taken:

HALT
data and address lights cleared
RP a address traoped
PSH » RPH
TR2L »• address of vector

Figure 17,

N

V

TR2H=0
TK2L=vector addr
TR3«0

TR2K=(RP)
TR3=RP
KETS-i i ve keys

000
Stop/Step

re keys=KEYS

SSTE?

!SAVE=0
tTC?e*i

^ ^ 4 ^ \ d c w n
\ . ^•/tnap'oed

(up
,abs

101
C lea r

110
Address Cc

r—
" o r " addri Tor" dat
w swi tcnes
+ d isp lay
t o i i ah t s z!2

w swl tc
+ d i sp l
t o ! igh

I

=0

map l og i ca :
r e a l s t e r f i l e .addr jU

f e t c h

address t o
< s e t [P^ysica

address

•RZĤ memcry

r
TR3=0
.and..
display
ro 1 rents

TR2K=0
and

displa
to lie

memory=7R2H

DLTCH5=0

man '

7R2H=RFL
and

display. T)O
Iiahts

TR2H=RFH
and

d i s p l a y t p
1 igh ts

1

RW=7R2H

F i c u r s 18.

	Cover Page
	Outline
	1
	I. Process Exchange
	-- A. Data Bases
	2
	3
	-- B. Instruction Primitives
	4
	-- C. Dispatcher and Register File Management
	5
	6
	II. Traps, Interrupts, Faults, Checks
	7
	-- A. External Interrupts
	8
	-- B. Faults
	9
	10
	11
	-- C. Checks
	12
	III. Register Files
	13
	IV. Control Panel
	14
	V. CP Timer
	15
	Figure 1
	16
	Figure 2
	17
	Figure 3
	18
	Figure 4
	19
	Figure 5
	20
	Figure 6
	21
	Figure 7
	22
	Figure 8
	23
	Figure 9
	24
	Figure 10
	25
	Figure 11
	26
	Figure 12
	27
	Figure 13
	28
	Figure 14
	29
	Figure 15
	30
	Figure 16
	31
	Figure 17
	32
	Figure 18
	33

