e 1)
s

FRQOM:

SUBJECT s

i

-LI.

III.
Iv.

Va

o .
jm@)

#arch 2%, 197¢&
Proarammine and Sngineering Staff
M

e Le Grubin

P-=4CC PROCESS EXCHANGE AND NEW PROTOCOLS

Frocess Exchange

Al

C.

Osta Sases

1. Ready List

2. WAIT Lists

3. Process Control Slock (PCB)

Instruction Primitives
1« WALIT
2. NOTIFY

Dispatcher and Register File Management
1. Reaay List Maintenance

2. Register Set Assignment

2. Fetch Cycle Trap

Traps, Interrupts, Faults, Checks

Aa

C.

Egxternal Interrupts ’ -
1« Cperation
2. Special Instructions (IRTM., INOTIFY)

_FauLts
1. ©DLata Bases
2. CALF

3. Fault Handler

Checks

Register Files

Cantrael Panel

cP

Timer

PE~T-232

v At Wom b e 2 e s mehn s e e At M i ———— et o cmat@ ok, s o: ase e G 12 Sa = . e S - — B . - e = = —. . owma—.

S s
2 -

PR L S M
'
?

b hy;

v e e . T . - . . PR Cee e “ e L T T T S . © emeem s . - man . et mmnam... « —

L4

oy
4l

PRI Page 2 PE=T=232

R O S] - . :

P e .

EIR N T . :

=y :h“:r

hucﬁtl PROCESS EXCHAN«E

.‘:.::.,- LA .
~a.The Pr;:ess -Exchange machanisa is compesed of three data bases and two
v vbasac, iastruction primitives. The data bases are the reagy lList, wai:

Lists, and Process Caoantral 2lacks (PCE). The basic instruycticn
primitives are YAIT and NOTIFY. 1In addition, there is an indepencent
.aechanisn for caontrolling the usage of twe register sets which is
‘Felated to., But net part of, the ready Llist data base.

N, - .
R RN

A. Bata Bases

1. Ready List

.. The ready list is a tuc-dimensional list structure used for griority
. scheduling and dispatehing ¢f processes. The entire ready list dats
‘Base (eaxcluding Live registers) and all PCS's are cantained din a
‘sincle segment. The segment number oT this sagaent is ecantzined in 3
18=-cit register called OWMERH. Within the segment, all gaointers ang
accéresses (except Tault vecters and wait List pointesrs) are 16-bit
['nrd number gquantities.

LR TR B H)
.
-y

*

T The two-dimensionslity of the ready list 1is achieved . with 3
- array gf List headars feor each priority level cecmgcesed gf a Se
of List (20L) pointer and an End aof List (EQL) opointer.

-

n
n

-lo‘b
a %

ines
nnin

¢]

Each paiater Is the 1$=bit word nurber address of 3 PC2 (in the same” j

segment 3as the ready list). The PCB's cn each prxar1ty Level List are
$¢rvard-threaded through a 18=-cit link word, and as nmany FCS*s as
desired can Lte thresded tocether on each pgrierity level to Torm the
ready list. - A prccess’' priscrity Level is both determines by and
encaded a3s the address of 2 80L poeinter in the ready List. ?riocrity
order is determined by arithmetic comparison, i.e., smallar numbers
(aédresseas) are higher priorities. As a result, gricrity level (ist
. hezders rust be allocated in contiguous memory st system startup tTime.

The 'end c¢f the ready list §is determined by a 8QL containing 3 1 (PC3
addresses amust be even). An ampty level s iJndicated bty a 20L
centaining 0. Figure 1 is a picture af the ready Llist structure. The
32=2it reqgisters PPA (Peinter To Prcocgess &) and PFB (Pointer te¢
Prccess S} are 3 speed-up mechanism faor locating the next process 2o
cdispatcha. PPA always ceontains both the level (20L peinter) and PCE
acdress (designatec level A and PCBA) of the currently actvve process.
- -PFd points to the NEXT preccess to be run when gracess A ‘goes away®
' PPA net anly gcints "ts the currently sctive oprocess, but. by
definition, Level A js the highest level in the system. It is possitle
fer PPE and PP3 tc be "invalid®'. This caenditisn is indicated by a PCE
- aadress of (. It 4s dmportant NOT te disturb the level gortions.
especially level A since, even Jf invatid, Llevel A& dindicates the
highest level that %WAS in the system and therefare determines where in
the reséy list to tegin a scan, if necessary (PPR. invalidl), Tfer <th
next grocess to run. - In 2 comoletely idle system, both PPA and PPE
will e invalid and, ugon ccapletion of the ready Llist scan, the u=-ccde
.will ¢2 into 5 °*wait fer interrugt® lcen.

)

e

™

"

’

1

3

.
!

~
-~ 1t is important to notice that there is no word number pointer to the
N .'irst priority level in the ready list. The ready list allocator.,
(éh“ch starts the praocess exchange mechanism, knows where the Llist
_2agins and, during execution, level A (in PPA) will always point ta
either the highest level currently in the system or° the L&st .knoun
highest Llevel anc, hence, acts as an effective ready List begin
ceinter. In addition, level 8 will always be higher ~than the *““secend
Level to run. That is, a PCE can never bDe an a level higher thar level
B unless it is the cnly PCB higher than level 8 (i.e., Levef AJ'* '
Tue °'queuing” algor1thms will ke 1mplementad for the reagy L1srz“g1ther
FIFQ or LIFO gqueuing.
LE Lk
2. WAIT Lists '

D D A D D P D <ud =y . x

Every PCZ in the syster will always be somewhere. If it is not on the
ready Llist, then, Lty detiniticn, it will be on a3 wait L1st.f,4 wait
@ﬁwet is cefined by a 32-bit semaphore consisting of =3 16-bit’ counter
O end 3 16-bBit warcd number SOL pointer. Since the ready Lxst and
all PCE's reside in cne segment (OWNERE), and only PCE's go onto: wait
lists, a segment numkter 1is not needed in the semaphore. -Hawever,
serapharaes thamselves can be anywhere and, in general, are MNMOT in the
FCE segment. The structure of a wait Llist is sheown in figure 2.
7>‘Qctice that the last block en the wait list contains a 0§ Llink word.
~%~‘ <jce also that the semaphore contains only a3 80L pointer. E
\fhxe ‘gueuing?® algoerithe for wait lists 'is process pricrity gqueuing.
That 1is, the pricority level af a PCEB will determine where on the wait
list the PC2 will be queued. For PCEB's of equal priority, the
slgaoritha tcecomes FIFQ.

3. Prccess Centraol Blgek (PCB)

P

he contents of the PCE are shown in Figure 3. The PCE can Dbe” broken
it@ the fcllcuing Lcgical sections which are ordered as shoun:.
a. Controtl -
0 - Llevel (pointer tc 50L in ready List) 3 -
1 - Link (pointer toc next PCE or 0) .
23 = SH/aN e¢f Wait List this GEtlock is currentty an (SN—G
indicates on ready list)
4 = abort flags used ta genérate Process Fault when PC2 s
dispatched.
Current bit aSSIQnments 1-15: REZ .
16: proce2ss interval
timer overflow
S»,7 - reserved -

~A€h- B. Prqcess State) : -

3,9 = Process elapsed timers (must be maintsined by software
that resets the interval timer)

s) 16,12
e 14
15
16

nye

i3

17
12,33
34,41

S A

0TARZ and DTAR3I (never saved, aluways restored)
Process Interval Timer with 1.024 msec resolution

Reserved

Save mask

registers
Bits

g

1= &:2
8=-12:
13-14:
Keys

GRIJ=GR7T

FPO=-FF1

- used

A

tae aveid

saving

PE=~T=232

-

and restoring

§RC=~GR7 (2 words esch)
FPC=FP1 (& registers., 2 uwards each)
Base Registers(PR,SE,LE,XB)

l.
T g L3
(2 I B |

Yew 8F il e

. e

42,49 Base Registers (PE,SE,LB,XB)

'y
&

dote that although all the pegisters are assigned Lacations
. ¥ithin the PCE, only non=zero registers will actually be saved
oo ' which results in a compacted list which can only be determined
’ By the bits in the ssve mask. In general, the saved registers
(these nact equal to §) will be between words 1% and 4%. The
order af the registers., however, is fixed as abcve.

Ty ey oy
S,

Fault (See sectiaon cen Faulzts for a cdescerigtion of the wuse of
this portion of the PC3) .

tables for
and Ring 3

{This stack need

SN/HN pointers tao fault
Ring C» Ring 1, Page Faule
fault handlers

Fault Stack Header

Stack 6 word entries.
at word 43).

50,59 - Fault Vectgors:

60,62
63'.-

- Ccncealed
- Caoncealed
net start

2. Instruction Primitives

There zre twc bBasic instructior primitives +for the praocess exchange
‘mechanisx: MOTIFY and WAIT. In addition, NOTIFY has two variants.
These instructiens., similar to 0Djikstra‘'s P and V operators, are
essentially ‘*interlock® mechanisms. These instructions are three=warg
-(4E&=Eit) ‘instructions® as follaous:

Instruction (16=-bit universal generic)’
32-tit pointer to semaphore address

event (CP., time.,
used tao signal
used to wait for
is waiting. :

As suggested by the names, WAIT is used to wait for an
unit record device available, whatever) and NOTIFY is
that an event has cccurred. In particulsr, a WAIT is
a3 MOTIPFY and a NOTIFY is used to alert a process which

: .- Ceardination is achieved by means of 3 semaphore containing a counter
- - .- and & 80L pointer. The semaphore and the P(3's waiting for the even?
LW cf that semaphcre constitute a wait Llist. The counter, if greater than
.. . 0, indicates the numker c¢f PC2's on the wait Llist. I1f negative, it
:_ indicates the number of processes that can obtain the resource
o Sexsphores fall into two castegerties: public and private. & opublic
csemanhore is used tc ccordinate several processes tconether or control
system resource. Private semaphores are used by a single process

A

.

a 1]
to -

.t ————— e ————- e $aae lewiwmn b & g hew -

\»

2

4
\

Page b B . . PE={=di¢

/-egordinate its own activities. Far example, if a cisk reduest is made.,
A-mpgcess will wait ocn 3 private semaphore for the disk operation to

splete. The disk process will then notify the semaphore upon

«ompletion, The distinguishing characteristics of a private semaphore
is that only 1 PCE can ever be on that wait list. A public semaphore

can have many different PCE2'S cn its wait list.

X .
g& NFYE: use FIFO gqueuing op code

1. WAIT

The agperatien of wait 1is ‘as fellows: the semaphore counter is
incremented and, it greater than O, (resgcurce not available/event has
nat accurredl, the PCB is removed from the ready list and added to the
specitied waijt Llist. If the counter is less than aor ecual to 0, the
prcecess continues. If the PCR is put on the wait Llist, the general
reqisters are NQT saved ancd the register set 1is made available.
Therefcre, a pgrocess can MEVER degcend on the general registers being
intact after 3 HAIT. 1In fact, from the point of view c¢f an executing

‘ccesss, a WAIT appears as a NOP which destroys the registers. In
acaition, WAIT will turn off the process timer. Figure 4 is a detailed
Tlew chart of the WAIT instruction.

2. NOTIFY

- ap on an e

2 NGTIFY instruction has two flavors:

1
1

Tt 16 G
t 16 1

wds wly

B
NFYE: use LIFO queuing op code B

The instructicns differ CNLY in the ready Llist queuing algorithm wused.
The operation of NOTIFY dis =2s follows: the semzphore counter is
cecrenented and the notifying process continues. If the <counter 1is
less than Q, no acticn is taken, but if greaster than or equal tec 0, 3
FCS is remcved Trom the top of the wait list and added te the ready

ist. Nao explicit actien 1s ever taken aon the notifyinc process., only
...2 notitfied semaphore. If a notified process is of hicher priority
than the notifying praocess, the Llatter will . be effectively
*interrupted?, but witl remain on the ready Llist. Ficure 5 1s a
getaziled flow chart af the NOTIFY instruction.

€. Dispatcher and Register File Management
The agisgatcher is the root of the process exchange mechanism and is

respansible for determining the next process to run (be dispatched).
and assigning that process a3 register set. There s considerable

overlag with NOTIFY &nd WAIT in functionality related to maintaining

_the ready List. Ffcr example, both NOTIFY and WAIT update PPA snd PPE

{ -
-

as appropriate, but the dispatcher scans the ready list if PPA is

%§R!3Lic. Register file management, incluaing any necessary saves and
D

2stcores, are the sole province of the disgatcher. Figures &6 and 7 are

~wetailed flow charts of the aispatcher.

- vann il @ummte. " wbeo: mmmnammesbem e @ cceteee - fe e e e e e s e me tiicnm 8B es B mmme s meE e e G SR am. ¢ o @b wbe o @ mifne e

e S dmras ey

- R . . -a - e . .- e e . menm e

Page - 6 ' PE=T=232

1. Ready List Mainrtenance) . .;)

Upan entry., the dispatcher first asks if PPA is valid. 1+ it ds, the
preceess 15 assigned 3 register’ set and disgatched. If PPA is not
valia, a scan ot the ready List is initiated. 1f a PCE is found, PPA
is adjusted 3nd the process dispatched. 1If the ready tist is empty.
the gispatcher idles. Whenever a process 1is dispatchea the process

- timer is turnec on.

.2« Register Set Assignment

In each register set, a register, designated CWNER, contains a3 pointer
te the PC2 cf the process which ouns the set. OWNER is a full 32-bjit
pointer and OWNERH is used throughout the systez to determine the
segment number of the ready lList and PCE's. Obviaqusly, OWNERH =aust be
the ssme in both register sets. 1ln addition, the low order bit of the
keys register (KEYSH) 1is used toc 3incdicata2 whether the register set is
avajlzble. The bit is called the Save Dene bit and., if set, indicates
that the register set and its cogy in the cuner®s PC3 are identical (3
save nas been done). This bit is set by the save routine (called <rom
wAIT er the dispatcher) and reset when a process is dispatchec.
Whether 3 register set is available (SD=1) or not, it is always owned.
Therefore, if a process goes auway {(either as a result of a WAIT er the
natification ef & higher Llevel process) and comes back agai

ageration is net necessary. If 3 register set suwitch is necessary, the
process timer is turnec off. The details of selecting which register
set tc assicn tc a process bBeing dispatched is shown on the right of
Figure é. The cdispatcher is the only code which switches register
sets.

3. Fetch Cycle Trap

At varjous points in the dispatcher {(indicated by I on the flow chart)
a check for dnterrupt pending (fetech cycle ¢trap)? is made. As a
result, interrupts can occur either dn the fetech cyele or in the
dispatcher. The passitle Fetch Cycle traps are:

1. External Interrupt (See Part Il1-A)

2. C(P=timer dncrement anc possible overflow (See Part V)
3. Paower Fajlure (See Part 1I-C) -
4. nalt switch on control panel (See Part 1IV)

S. End=of-Instruction Trap

The end=cf=instructicn trap cccurs either from an ECC corrected error
or fror 3 missing semory module, memory parity., or machine check during
1/0. In all <cases, if the check handling software returns (via LFSW
instruction), the possible destinations are either the fetch cycle o

the dJdispatcher (F2 in PSY not a real program cogunter). In erder to-

cuarantee the proper cestination, bit 15 of the keys (KEYSH) is used
te incicate §f¥ the +trap was cetected by the dispatcher (Bit 15=1).

ST L

\

ok

iwmediately anc, if that crocess still owns the recister set, a restore

~

rage (FTT e

-This oit is set by the disgatcher upon detecting a tragp and is reset

~>=n a process is zctually disgatched (return to fetch cyclel.

¥

It TRAPS, INTERRUPTS, FAULTS., CHECKS

Feur words used frequently are *trap?, ‘*interrupt?’ (or ‘?external
interrupt’), ‘*fault', and ‘*check‘. The meaninags of these terms are
carefully distinguished for the P-430/5CQ. Softuare breaks in
execution are diviced 1inte <three main categories referred to 3s
'interrupts®, ‘faults', and *checks®. The word 'trzp®, on the other
hand, refers ta a Ereak in execution flow on the u—code level. j
Traps can cccur for many reasons, not all of which csuse software
visible acticn, and are always processed on the u—-code level. Some
Ttraps may directly or indirectly cause breaks 1in scftware executian-
tut not all softwzre breaks are the result of a trap.

0p the PRIME 3C0, dinterrupts., faults, and checks used the same protocel
éé%get te their resgective software handlers, namely they caused a
vector throuch a dedicated sector U location (JST* vectorl). Gn the
P-40C/50Q, when precess exchange made is enabled, the three categaries
use different grotccels both from the P-300 and each other. Rouchly.
the three teras are used tao describe:)

~ 1« Interrupt - 3 signal has Been received from a device 1in_ the

external world (including clocks) dindicating that

{
&fﬁ~) the device =either needs to be serviced or has

completed an operation. In general, an 1interrugt
is not the result of an operaticn initiated by the
currently executing software and will not be
processed by that software (though, of course, it
may).

2. Fault - a condition has been detected that reguires
scftware intervention as a direct result of the
@h currently executing software. 1ln general, faults
can be handled by the current saftware, though 1in
many <¢3ses comman superviser code within the
current process handles the fault. Alsao» in
‘ general, an external device in the real world is
ncet directly invelved in either the cause or cure
ot s fault condition. Often, however, external
‘devices are involved indirectly a3as, Tor example-
in performing a page turn operation as a result of
a page fault.

3. Check - an internal CP consistency proktlem has been
detected which requires softwars intervention.
The condition could be either an integrity

¢ not exist, or a power failure. 8y c¢ontrast, a
reference to a page which is not resident or an
arithmetic operation which causes an exception s
3 FAULT ccnédition.

;@m violation, reference tc a memory module which does
A"
~—

o e ass em— — - - RRCHPSY - . eas v . I R . e e -

Page & PE-T-232 ..

A, External Interrugts j)

1. Coeration

External Interructs cperate in either af two modes depending upoan
whether process exchange is turned on. 1f process exchange is aff, all
interrupts are treated as 7-30C dnterrupts. In all cases, except
memory increment, the address presented By the contraller (aor 43 if in
standard interrugt mode) 1is used as the. address in segment 0 of a
186=bit vector. This vector, in turn, points toc interrupt response code
(IRC)» also in secwenrt C, which is entered viaz a simulated JST* through
the vector. Thus, the current P=counter (RPL) is stored in (vector)
and executieon Begins 3t locatieon (vector) +1 with interrupts inhibcited.,
but with noc octher keys or modals changed, I+ 1in vectcred fdnterrup?
mcde, it is the responsibility of the software te do a CAI. 1In either
mode, the full RP is saved in the register PSWPE. :

If orocess exchgnaoe mode is on, an entirely different amechanisa
operates. In all cases, except memory increment., the address presented

bty <the contreller dJs wused as a 148-bit word number gffset into the
interrupt segment {(24). This segment is guaranteed to be in memory.
bBut STLE =isses may octcur. The current P2 (actually RPY and KEYS ’
(keys ancd macdals) sre saved in the u-code scratch registers PSWPE® and -
PSUKEYS. The machine is then inhibited and the IRC begins execution 1. ¥
64V mcce. It is the responsibility of the IRC tao issue a CAI. It is~-
irgortsnt to ncte that the IRC in the interrupt segment. does not belons

t0 any process. PFA pcints to the PCB of the interrupted process and.

in fact, no PCB exists for the IRC. Alsoc, except for PE and KEYS., no
registers are saved. In fTact, even PSUPE and FSWKEYS are in the
register file ancd nect 1in memory. As 3 result, the IRC cannot do an
enable and must returnm toc the process exchange mechanism (i.e., the
dispatcher) 3s socn as possible. . Because of all these restrictions on
what the iJmmediste 1IRC c¢an do., as well as the fzct that it does not
Beleng to any grecesss, it is retferred to as phantom dnterrupt code.
Unless the jaob ¢f servicing an dnterrupt 1is very simple, phantonm
interrupt code can do Llittle more than turn off the controller's
interrupgt mask., issue 3 CAl, and NOTIFY the real IRC.

A memory increment interrugt is handled the same regardless of the
state of protess exchange. The address presentec by the controller is
used as the 1&-bit wecra nuamber in segment 0 (I/0 segment) of-3 16-bit
mercry cell to ke dJncremented. If the counter does nct overtlou
(=1=>0), the u~-code simply returns. Wwith process exchange off, the
return is always to the fetch cycle. Yith process exchange on, the ’
return is either tc the fetch cycle or the dispatcher, depending upon
where the dnterrupt was detected. When detecting an interrupt, the
cispatcher always insures that RP=F3 snd that all Llive keys=KkYS. 1f
mezory increment returns, it does sa to the tap of the dispatcher
without having touched PE or XEYS. 1In this sway., memory increment i -
guaranteec not to destroy any vital dntormation needed by thefﬁ%-/
dispatchar. If the memory cell counter does overflow., an End—-af=Range
interrupt is generated and then memory increment returns. The

Me e nmm m mme i meweremdrme tammre a0l pneee t e oL o SO TA e, e e oo

zsequent EOR interrupt will then be treatea like any ather external

R rupt. Figure 8 is a detailed flow chart of the external interrupt
ler. :

2. Special Ilnstructions (IRTN, INGTIFY)

2hantce interrupt code has two aoptiaons far the actions it can take. 1If
the servicing required by the interrupt is very simpler, phantom code
car completely gracess the interrupt and return to the dispatcher. If
the servicing regquired is more complex, the pnantom c¢code must turn off
the ccntroller®s dnterrupt mask and NOTIFY the remainder of the IRC.
In the first case, PS5 and KEYS must be restored from PSKPS and PSWKEYS
and then the dispatcher must be entered directly. Since PB cannot be
restared in ghsntom code (the F=counter will point to the iastruction
ix phantoa ccde) and the dispatcher cannot be entered directly (no
such instruction existsl), the special instructicn, IRTN, a 14-tit
gagmeric, 1is executed to perform these functions. After entering the
i\ .aetcher via an IRTM., the dispatcher dces not know that anm interrupt
gccurrec.

Im order To MNOTIFY 2 process., phantom code must insure that FS5 and KEYS

are restored before dissuing the ' NOTIFY. The special instruction.,
_INQTIFY, gerforms the restore and then does the NOTIFY. As NOTIFY.
{ -3 TIRY is a three-word generic with two flavars, INOGTIFYE and INQTIFYSE
‘1 . e the beginning of list option has bit 16=1 and the end of list
;L ‘fen has bit 16=C in the opcode.

Phantom Interrupt code can issue a CAI in one of two ways. Either an

explicit CaAl instructicn may be issued or the IRTN/INOTIFY instructions

canm Jssue irt. Eit 15 e¢f the IRTN/JINOTIFY instructians is interpreted

as fallaous:

git 15 = 0 do not issue CAI
1 issue CAI

In all, there 3re four INOTIFY instructions as follous:

Name 83t 15 16 function
. INEC 1 Q End + CAlL
INEN a g End + no CAl
INBC 1 1 Beginning + CAI
INEN C 1 Beginning + no CAl

Figure 9 is a detsiled flow chart of the IRTN and INOTIFY jnstructions.

(- Faults

dgff;utts are- CFU events which are synchroncus with and, in & locse sense.
‘_/éused by software. Eleven fault classes have bteen defined for the
P=400. Several of these classes are further subdivided into distinct
tyges. Cf the eleven, three are completely new for the P-400 and, of

- ——t—— - .

- emmin w AW wEe Cee Bl e v tea L e nenen miE At sl At o e AR PE B O Sir eeemme e —mccamy st s o ———— s e s wew semens &a ————1 v "

P - . . . can =

Page 1C _ PE~T=232 <\

o

the ather eight, three have expanded meaning when jn P=400C mode. The

eleven fault classes and their meanings are: _}
Fault P=400 . P=300 ’
RXM Restrict mode vialation same
Process Abort flags wera JME. G MJA.
in PCS on disgatch
Pace . Page Fault (Page not 1in same
- memary) .
sve : N.A. Supervisor Call
Uil Unieplemented instruction " same
ILL Illeeal instruction same
Access Violatien of seqment Page write violation
access rights . ‘%
Arithaetic ALl FLEX + 1EX (Integer FLEX . :
Exception))
Stack Stack overflouw/ungerflcw Procegure Stack(S—-Reg)
Underflow .
Ssegment 1: Segment # teag big N.A.
2: Missing segment (SDY¥ N.A.
fault Bit set) .
.- Pcinter Fault Bit 3in pointer set N.A. , 3

The fsult handling mechanism consists of two data bases ‘and the CAL faﬁ"
instruction. The u~caode is in turn divided into 3. set of !frant-ends -
for aach fault class ard 2 cemmon Tault handler.

1. Dsata Baﬁes

The fault data bases consist of the fault vectors and cecneealed stack
in <the PC2 and the fault tables pointed ta by the P(® vectors. Figure
1L shows these data bases as well as the mapping of #P-3C0 faults ¢o
P=43C faults. Alse shoun in this ficure is the differentisl ac:ionﬁaﬁ
ta2ken according te fault class (e.g., what ring to pracess the fault
ind eand the set up the u—code *front end® must 4o before goine to the
common fault handler. :

The underlyinz philosophy of the four fault vectors is that uwhile sone
faults may need tc be processed by ring € code- others may be
adequately handled in the current ring of the faultine process. The
vectors are in the PCB ta allow different processes to have different
fasult handlers. Fcr example, process A may wish to use a system fault
routine <0 handle pcinter faults (dynamic linker) while process € may '
wish to define its own algerithms for resolvinae pointer faults. Notice
that 49t is always possible for 3 *'current ring® fault handler to call a
ring £ procedure if the need arises. Note also that page Tault has its
own vector desgite the fact thst ring U is entered. For the special
case of psge fault, only a single, system—-wide orocessor #ill be use - :
ard all FC& page fault vectors will point tec the szme place. ‘ﬂﬁ“’

-

The concealed stack, also in the PCB, is used to allow fault on fault

onditions. for example, it is quite possitle to gcet 3 segment fault

"} ‘e grecessing 3 secrent fault. The only fault which cannaot cause

N

QAj CALF instructicn has tue mzjer functicns. Firss:
{7 dinterrupts fer tca leng, the CTALF instruction
@
s

ither fault of any type is page fault. ESach frame of the concealed
sTack coentains the P2 and keys (KEYSH) of the faultinga grocedurs 3s
well a3s a fault coce (to distinguish different types within each ¢class)
anéd & fault zcddress., if approgriats. The stack itsel? s c¢irculsr and
aust have allccated sufficient frames to handle the Llongest pessible
szquence of fault cn fault that can occur in ring 0. Such a sequence
misht ce: Painter (lirk) .fault => Segment fault => Stack Fault =>
Segoment fault =-> Page fault. Note thst this particulsr sequence oceurs
bafore any scttware fault handler is entered. Also, the Tirst segment
fault enters ring C,» sa a3t least 3 five-level stack is necesszry 1T the
criginal link fault is te be processscd correctly.

cnd dats base coensists of four distinet <fsult tables, each

te by 3 Pc= fault vecter. Each entry in the tabls c¢onsists of

ds of which the first thres must te 2 CALF insftructicn. Gnly

fault takle must ke locked teo memory and cnly the ring 8 table

3 pre-cefined (S0% exists) segment (a;hprs e, ssanent

ecurse inftfinitely). Naturally, the ring § tzble, 25 wall
s carefully audited by ring 0 procedures.

-
T
L7
(2]
W @

BTG a0

0.

nolding
& restzrt.
ro-machines
5 pracess
eccnd, 1%
czll fTrom

te the

DY 1)
<

[P o
12)
b

in Tault hancling since it has a P2 (j.e..,

<

2 g
J.0 9 0

~ (D Uiﬂ.ﬂ!/i =N

3
tuction) . As & result, 3t §s quite possible
e ajddle af gettineg te & software fzault h
s & straightforward aechanism to simulate

aulting procedure (3t the instructicn czusing th

[I\ 7}
“h O 3 LMD O
Mmooy 0
(s ¢ 8 [4]
~ {

L B)

The iastructicn i is 2 three-word gensric in which the second ard
third words are 3 t gcinter to the fault handler. To simulatsz the
@&ccedure call, the PS and KEYS from the concezlsd stzck are placed
the fzult handler?®s stezck frame alang with the other bzse registers
(cnly the PE and KEYS have been chznged to point to the CALF zand ta
enter &4V zddressing mcde) to be used by the standard proccedure return
(FRTN) dnstructicn. In addition, the Tault code and address are
glaced in the fault hancler®s stack ss if they were arcunrents passed by
2 stancard prccedure call (PCLY dnstructicn. fter the informatisn is
meved Trom the concealad stack it s poppecd. In all ctler respects.,
CiLF js dcenticzl to PCL.

3. Fault Kzndler

- o AT s T D - = > = — o iy

e fault hamcler is 3 u-cede routine that is entsred Trcm the wvarious
J{ﬁeuLt clessi 'frcnt ends® 3nd, based on prcc=s< exchance mcde, sither
imulatas & P-3GC tyge fault (JSTx through segment { fazult vectors) or
gerferms the P-40C Fzult orctecel which includes set ing us & caoncsalegd
stack frame, switching to 84V mode, and determining-, on the bassis of

© se 4t e ssmse ewmeees e . o e ert e ST @ WS EE SR WSe Mm @S T cmedm asr = ¢ mr @ = Ms Mtee smams mes @wewe

Page 12 PE-T=-232

-

jnfermsticn providec ty the 'front ena', which fault vector to use anr-
sasttins P& to point to the proper CALF in the fault tsble.. Figure 1
is -3 detailed ftlow chart ¢f the fzault handler and fFigure 10 contains 3
teble of the necessary setuo pertormed by each fault class *‘front end'.
Nate thst far F=30C ftaults, the full &P §s also saveg in the wu=cgde
seraten register PSWPS and the machine is inhinited far ene instructian
it in Rinc G. .

€. Checks

Checks, unlike faults, are CPU events whizh are asynchrencus with, and
are not caused by, nor=mal dnstructien execution. FRather, they 3re
events «hich are either invisible (e.g., an SCC carrected =arraor) or
fatal (2.3., missing aemery =module) t¢ the currently =zxecuting
crocedure and perhags the CPU entirely (e.g., machine cheek). Checeks
essasntially regresent processeor Faullts 2as c¢coosed <To process ar
srecedyure faults. fFeur check classes have been Qefines as Ffellows:

Check P=-404) P=3440
Pswer Fsil Pewer Failure . Same
Mempary Parity - €CC cerrected '
. ECC uncorrzcted Memary Farity
Mmacnine Check Fatsl CPU errcr same)
?issing Memcry Mecdule ° (Memory module dces nal 2xis: .same Jﬂ%

Unlike faults whicsh can be stzcked and interrupts which czuse a3 process
tc be suspended, each check class has s single save arez (check black)
ccasisting of eight werds in the inmterrupt segment (£4) din which PS

ané XEYS (high and lew) are saved in the first four Locaticns (check)

header) and the remaining Tour Llocations <contsin software code
(probzbly J¥P). Figure 12 is a picture of the check data kases &3
well zs desceristicn of the necessary u-code setup resquireg baiore
goinc tc tha czemaon check hanaler. In addition ta <the memory dails
bzse, three 32-kit registers are used as z diagnostic status word (0S4)
tc hetlp scttware check hancler sort cut what heppened. Figure 13
shews the Tormat of the DSw.

ohtv 0 M

Check reporting (traps) 1s controlled by the twoe low order bits in the
maodals (XEYSL). The passile szodes asre:’

uew = na reporting
report memcry parity (uncerrecte2d) enly
report unreccvered errors only '
report all errors

[RN AY I B e

The ¢hegk trss czn rssult in *wo possible zetions degendine wupen the
type o¢i7 check tThat occurresd and the type of u=caoce which was tragpes.
17 the <tragped <ccce was either OMxX, PIO, or =2xternal interrup
precessine (unless the error w3s & machine check for RCM parityl, or in3r
the check was fer an ECC corrected (2¢CC) error, the‘aﬁwq
enc-of-instructicn flag 4s sst, REQIV is set te the graoper

At
-

e

3

\’%@

ffset/vector, MCM¥ js set to G (except ECCC which sets it to 2), and 3
‘megode RTHN to the trzpped steg is executsc. In this way, the I0 bus is
ays teft in a3 clean state. In all other <¢zses, the check to
tware aoccurs immediataly. figure 14 1s 2 detailed {low chars
rowing the cceratian of the check trao hanalers.

The comman check hancdler is entered from wvarious checkx *front ends?
and, Sased on gcrocess exchange moce, either simulates a P=3CGC type
check (JST=* through segment O check vectors) or performas the F=40C
check garatocel w~hich includes setting up the check hezder., inhibiting
the maschine, and switching ta 64V addressing mocde. In either mode, MCH

is get to U before geing t0 sceftuare. Figurs
chart af the <check handler =znd Figure
necessary setug periscrmed By esch check class
TII. AREGLSTER FILES
Tne PRIME 43G/308C czntains fcour distinet regl
?wfther diviced dinte hzluas., =sach 32 lgcati
L ch 1¢ Bits wigde. One half is referred to =
ciher &s the low half. Since voth halves ar
regcistar file contains 22, 32-%it recisier o
The registsr Tiles, numbered Trom C, are used

- RFO = u=-cecds scrztch and systam regi

N RFf1 - 32 d#A channels

Co.e RFZ = User register set

\\gm RF3 = User register set
Tnis lazycut of recister Tiles allows ezsy exp
files, thus zdeing FTecur new user register set
have the same internzl Torzat sndé the DHA reg
a7 32 chznnel r2gisters. Channel rzgister '2
tG the P=300 CH#A registers *Z20 and *21. Chann
s '2Z &ndé ¥Z3. In thi w3sy, the mapp
register ia RF1 to channesl register 34, macp
F&her RF1 registers represant additienal d#
¥ sure 1¢& shcws the internal structure (usage
register sets (RFZ, RF3). Hete that all user
segment number o7 the Ready List/PLZ segment
the mogals (XEYSW). It is necessary, taefore
mccs2, ta set CANERE in ALL register sats
MEYER alter it thsresfter. ALthcucn zll regs
jor the modals, cnly the current registsgr sat
mccals. it s theretare nrecessary., Nhsa:
switchecs, tc cecpy the mocdals intc the new r
caly the Disgetcher switchsas register s=2
sr2cified Ly the three bit Fisld lzbeleg *CRS
tais Ti2ld <can spen up tc =ight register §

 ° tode scraztch and Dd¥A, user registar sets ar

7 .urses, only 2 end 3 are currently imol

v@ 430 /5CC, the (RS fi2ld must slways have bit
.+ selects the register s2t (as i¥ O znd 1 we
the u=-codz will only leogk at it 11.

tlow
the

15- 4is a3 detailed
12 centains a taals cof
front end’t.

-

-4

he 4N | I 1Y
(3}

r

“h

-ls

-

w

ot

77

b= M |
e O ooan
) wde

P

mn mo

ba WS]
0O ef A m

‘o QL
*i\l-\ﬂmn

[4 AN

-
JTw
|

N

N degl —
o

O) e

1 8
7]

|
D
0 r~ wr
D ~h
N5
o) s

i 0

o 7
n N QL) —

TP in O
O

PYTIN & 4

o

[[p]

R

et

1 W

=~ W oer M
w

~
—

o
[7:

wn

i
[4}]
b |
w

~ 3
P T N
ct
~ C 0
i 1]
nte
=3 (2
or
“
C ok
-~ 0]
N
et]

0D W
0.m ™M

O mw

o T T TR (VR Y YRR

—~uy rt

M X -

e UILo 0N

rip ~1m

[+

ol
w s ZTf
O N\ O o

~Alh o
3

~s) D

wde (D
<

Nty 30

[\TR 7]
W T r~ i th 1

CIar C XY ta @ rF
Y CYsr— D 0 3 et ¢t O

T
N.rt th n

3 0
vw Ot
wn
N
-
n
O
el 3 |
1]

a}
~)

o |
o}
WM LI e
]
A

v

MmOy W

(el 7]
a "

)

[

e = U1 D T
[

AY B

peaghe |

(71}

[11]

2

o O

s }

M M Ot
L]

-

e

3
0on v

-

W I VD DL~k

Lo T I U 7/ I o W

ct M~
Wy et OUW O

3 I ob

h)

K
>~

[\UNN's B RN

03

-}
-

W et 1p
r
“1

e)
[

mn

" o M s}
i o

IS B ol

[N 7 R TR Pt AV |

[T & T & A1)

r
oy W

(o]
W - 0T

J 4o rd n ¢ O b O
wn
<

W O~ O M Y0

3 b=t N O

b W
N e ¥

.l
e |

s & Y D
W (D

rt <3 n
th (%

w

Qm e O™

3
rt

LTI B LR ol | VIR T 1

i) D oA~ Q
“h T 0 et
—da " ‘u

o own

p v]
iyt p N

Q.

w 0
]
e BT
m N\

b |
o
.
nm
.
s

- -4 2

M ST Q0 U

nw oOcC o

,_..
cr
o 0.
W ta D N
[
0. (n 0.

n

N
Q
3

b ©

3 Y

C »n
e T o

L BN
“-h o

~

a1
[

B M

03

“h
r O

i
MmO

rt 0D

]

7]

A
v

wr
-l
(4]
e }
A Y
o |
~h Q.

[(H]
O W ey

b MR N o §

[}

L N

e |
"w
)
(&
£
O re
14
Nt
.
[0
)

e oy ae-n e

Camm e M a casm - s e mm eemy s emee 48

. = sese

e et

14

Pace

e

wm
-1
[

Iy
.

<

o
L X

oy~
[41]
o

w

£
3-

senel.

nercl

cs

o

¥ %1

<
-

uetion

e

s

LE T

LR/7ST

£

g

NN
[S
A N Y
(7 3]

(7 L
a @
L L
w Y
vuou

se

F-4
3
2.

a\l
essing
(user set

b
1]

-
)

scrateh/systam
ader

*1¢¢
ster C

L

LU
A d

L¢3 0
o (3%]
LY w
| WO PO 4]
0 a &Y

- 8% (O

L. o 2% (D)
W the U2
” G o
n L Le-
w1

-ty .

RO YO TR o4
w) o w

[

or

"y

L.
ar
Al

o
e
ar
1.

A2

”
W

a9
©
“we

"

o
L
(¥
v
op-
t.
o
[y
v
o=
[11]
o0
t.
»
@
s
[
b}
’
th
[]
[\ 1]
N
1]
t
L1
Y4
w
"=
th
L]]
t.
(9
(X}
w
4]
1]
o
ry
"
w
.4
~
LV I |
0o~
"I~
(1A
-lcd
[&
O 9=
L ¢
-
"qa
-
W
C £
-
a o
[I A
© o
(LR

4]
ga

Ay
ar

N

e
a

Y]

(38

-
")
u

e
wn
O

0.
1]

w

o

[
L
-3

o

L4
4
4

s.
(4]
'S

-t

3

m
it

—r
O
[8
(2]

O
(U

L2
=~

P DO TR A
ERT £ I SR Y N 4 I 1]
e e Qe kL
RN A L &1
(2L ¢ BN}
e 0y e 27 € 18
[vt [
LA ¢ N
AT § L
€ ae v 9 Q
[Sy] M
Com az
= x Yu ol
LUSEN] LI T
woas n b
[N A T o |
P82 82 V) € 42
£y "=
.t v e
[TIET g o 1 B ¢]
L O LR PO
t Own ar
O ar 4~ L v
Cvtal QO
WL u
£ D @
[SO PR P U ¢]
de U R0 Q
D W =2
v) -~ LN B
LL TR TR SO 72 B od
2w O~ 0
SR L =
PR TR TS V)
T G KU B]
R T I R TY AN Y
-t 7)ol (7
LLUB 7 I B o
| ha LR X4 n
[¢ 2 @ 2 n
e WD~ £ 4T M
Ve e QB0 W
1 oy
cBL se
v QOCN
ga o= K3
- 0
[BRI ST e & I ot
» oC & L 11}
(1 L O v eer
] ” n oo
LI U Sl 54
", [Y Y]
ter & Y
(o8] 42 W
[0 (X M
By 1]
R oo F] ¢
(W AU TR KL AES i ¢
PR)
™~ h w0
- I~ U
1 e €3 v K1 M
2 v [24
—)
1 ot @ ox D
. Qe b [
1] D e O
Wyl ') N
K >IN I 5l i o
PV B Y IR TR VA ¢

[

>

Q
Rt
~1
(%)

-.l
-

(U]

o n
Ar o
i
L/ I 94
Jw
£ g
LEARY)
o
- O
2) e
Q
X -
1)
0
LY BV O
1
"
7]
3
[
J
LY. 1)
L7 A &4
) 1
[54
Q- r
$
€
S
-
o M Ta
1
O ¢
LR B
0w
(LN 33
| P
Il
(4]
n
Lk B
v W
ar
t. o
Do
0o
n g
Q
=4
o
i
g o
s B 1)
ot u?
0 &
L7 B g
" et
1w W
0
H
m O
1. w
a €
£

4]
w

Ay

ar
| 99

@

a
£

=
o

~t
)
A\

T
0

th
[»

12

w
L)
L
v

"

o
G
"
e

-

v

L3t

W

[K]

LY

I~
-

121
”
a

ot
1]

o=
"
ko)

A2

11

1
42

(X'}
(2]

[}
K $4
[X4

-
2

“
ae
o

A2

t.
[
A}
..
[£4

(]
P

Qr
L3

)
-

acu

v

v
a
£

u

(2]

L.
W
4

i ad
rh

L.

v
ar
s

<

[
q
L1

"

.t

t
w
(]
ar
.
Q0
[}
)

[

«
0

"
tn

90
Loe
ar
(T4
(AR}
o+ W
th v
® 3
[%

(2]
T
“w-
L W
U]
[V
By 8.

(W]
[ZI Y]
w
[+ 1]
(YY)
U e
w O
[3 b
Y]

-t
b)
[Tl
o) -
N

LU
ar 82
g
w

[N
vt O
[
I]
te e
oW
v
(1]

“
ar «°
S
4 1N

v)
4.)
(4]

L™
U]
q
o
LY

(%]
iy 1l

wr
t.

@
) ot
L YO
0 e

i
hx
17
-t (e

13}
ar =
A |
[T ¥)

Gy

‘U

oy~
9.
i
L1
e

w

o~
10
-1}

*

LY

]
(7]

L]

n
e

3
ar

BT}
ey

a

o

o]
(b3
e

£z -
m~¢
e i)
£
o -
£ 0
ar W,
L.
N
£oQ o0
IR ¥
o
LU X
vr
s o
w b
Q@ »
[P N
(¢
W v
o
o »
e L}
ar
o~
& @&
w v
3
wm
"n .o
Ll 2]
~F Y-
wy O
L7]
<
' C
" =
[$)
e
ar ~
(2]
q-
[
[T)
L2 I 54
w
nox
I~
te =~
e
»
§oe
[SO 1]
ll‘
e L
~ O
(V]
<~
1w €k
pt |
N
o~y
%
Vo
ar
v L2

v
1]

>-

-d

"
W

o
[
]
]

-,

4]
&

[£4
.
'H

1
[V

>
o |
4.
“
(U]

1]

v
(2]
L]
(9]
(7]
w

W
&2
"

LN
0
3~
W

-
Re

dCC2sSS .

(S I 9]
Dol v 1
«l
LIP3 Tt ¢
Ger &
42 1=~ 32
L] "
Ral oa ¥
e 0
ar 2

.
ar w
- L
vt w
v
(1]
t. wv)
e~]
it (%)
Hwa, >
o W
h14
@ N
A2 O
LI i]
[T 9
e W
i & I B
Co
WL
A2
pe M Y]
N @
w € N\
-
[& W 4
(L] L d
LTy ¥
t)
Lo
42 °0)
42 2w
" o
w- 0 6
. (]
[)
[S
V]
w pe 34
(XS ¢ 3 Y]
m W on
LRI B
[
~ a2
Gy 40 ™
0
W o
[¥] 1]
pa }
-t g2 W
Q0w
t. 0 .
3w
@ o
[¢)
(¥
[
@ er) W
g2 0T
Ll i

5
LY

)
ore

L4]

[

[
3~

ar
£
-

>
(1]
N

[]
de
r
ot

o
£2
'y

'y
o
ar

-
s
<.

. W

[R I I

€20

M. t)
Y X
LY
(2]
e
Ml

— 2
[

[)
[

[3 I 4
I.)
§r gL
L ¥
(1]
u N

e Lrad
0on
(-1

L JEp
~om
M
R]

(X}
(U]

(1]

e 4
- 0
- .
ar e
I

]
v
()
LI
L RN 8
o
@
ce -
dr ()
0

.b
@t
LSRN}
| e
w0 9
K
(¥ I

2
5 -~
[T B
u

B¢
(A1)
£~
g epe
G "
LU B
e o
12 t)
1]

"
ar
-~ w3
K ot=
[}
ML L)]
L A
AR
e L
-—r U
bt B B 1Y
vy o
as e,
L.

T .

v
vy -’
o)

Y

0

'n
v

>0
L L 4
]

w

o~
s
J
o
[

0g- 0
"= m

ar
£

L1
0
Q

)
(R}
[4]

(LN

http://oetai.ee

Vo

Page 15 PE-T=-232

RP: address of "trapped® instructiaon
PSH: SN of 'tragped? instruction
KEYSH: proper keys
TR2H: (data) Q
TR3: (address) G|3O
TR2L: address, in segment 8, of the 'vector® containing C

CP TIMER

Resolution = 1C246 u-sec

Turned on by DISPATCHER befare dispatch.

Turnecd off by:
WAIT after/during save
ISP before changing CRS

Cn ticks u-code jncrements the interval timer (TIMER) in RF(CRS).
Wwhren that overflows, bit 16 in the PCE abort flags (memory) is
set to cause a gpragcess fault. '

It 3is the resgonsibility of softwezre that resets the dntervsal
timer to maintain the elarsed timer.

- . ; - ; e vn s L i . . et T dsan aes ot des et s o e ———— g —— s
e o4 emws v ais wes e e e remmma e s Y ge see W s wem = ems e © L e 48 oo e cwm o e -——ave o0 T P - -y —— s ;

[[~n)] !
Cea 1 71
el gu‘,.-‘._.,_— v
-
-
e TR EveT]

e e _E_’lLBA__ . ;-

- . e -
i
] 4
st - v
e
o g
e g .‘ VA
= rave |
.- G . Y

e —
F@ ‘
0 R
4 vy A

|
wligic |

ome TR uumﬁu»ﬂ« -
N

|
Ved 1esf
|

l}_’l
mi'

P o e oA T

ot B AN

Ready Lls+: ,All pomfars are |6-bit ward number. pointers within The FC3
e .. segment. "The Ségmn'i' nunbér is &g ‘!‘ajned in +he high portien
of -khe GWNER? pom‘t‘er Wiy hfn each gister set.
All PCS s"-ar-r addrﬂsses mustT be @ even (bi+ 18
-of 'rhe ready lis-'r is'marked with a QL eatry

. ' ' FIGURE I.

. - R T e Y
. emMms @ a . . fee = e [R S

WAIT LIST STRUCTURE

Y
Semaghers
Countar(=2)
gou leve] > |evel
- I ink g
(] wsn WLSN
L WLWN WLWN
_,(;\ _ -
k@m_ FC8 FCS
)ééi : Figure 2.
7 N

e - W . e e

vt b tt e 4 e emr e AR o T s il e w b o eee Ch . - P, s ———n femtadoh: - A omme ame -

Process Control Bleck (PC3)

.. - . - .- -

S ! -~ TN
i e % e
2 |._HLSN (D=on reaay [isT) 2 .
3 WUNN 3 ™
4 Y el a pjac._s 5’_' P
g Reserved 3 -t
7 7 -
g e Elapsed Timer — '? .
{? PEEE—— - .DTA& — g
4 inTarvai_imer t(1ive) &
15 | acarvan 7
15 | Seve mask 2%
{7 <ave 5'
S
Zi GAI - 5
%%_) Gn E— 9
38 GR4 g
28 | 4
g— o —1 o
3 GRS | -5, " order fixed, lccztions
§2 Ga7 49 flexibie depending upon
32 é save mask .
3z Frg 5)
36 . Frg rd .
3 8 =
%3 FPL, . 7 S
i 1
aspi PS - —_ 3
| S
R
i Fvg : R
1 I 15
I Reserved 8
sel . B
37 73 B
B - - —re—— T — | 2.
A g I e T LA S R
81 2NC22 180 STacR MEA 5
62 CONCESR | ag STAcK L uy | ' 6
?3)/ Concealed Fauli Stack v 7 : .
:/r (6 wards/eatry) j/ .

Figure 3.

saveq in, registsr
file

-

.z’\/‘<

N— J/

!gcun??tounf +|

(+2)=87
—nzch list

{((+1))=PC3
+1)=(FC3+I)
(FC3+1)=(+2) -

(BOL)=(+{)

WLSN and WLWN
+o FC3
Turn off C2 +imer

(+1)=80L Semaphore)
Addrass
"2
(+2)=((+]))

(+1)=(2)

FC8 +o WL predecesscr
RL successor

WL successor o FC3 -
RL successor To RL

Shor+
Save
dnder mask

level A=level E

Figu

FC3A=FCZa
PCaB=9

re 4,

>.

lceate position ¢
new FC3 in Wait Li
using Priority
Quauing Algerithm
whers, for egqual
priaorities, qusuin
is FIFQ

Remove ¥rcm Ready
List+ (RL) and add
to Wait List (ML)

FOP FF2 into FFA

On Entry, RP is saved
in register file

caunt=count-| -

Push
PEg=FRA
FPA=new

OPF code Bit 16 = 3 end -
! t:egim'zirn-';agﬁ

Remove #ram Wait List

*Far NOTIFY o Eeginning, The
" in the level check beccmes

ESH

level E=new

Add ‘o
Beginning?
SIT sat

>

gtgp't)‘y? AL (EOL)=FC3
L =
yes R
N
(CEOL))=FC3 et e
3% mem DISP 2 (FCS+1)=(EQL)
(EQLIace (EOL)=FC3

PP — e b

s -

-~

SNy
. .
2 .

A

Add o |
Ready
List

.\

= 23ng i ive Keys zars

N /

favalid . l

Nat2: All interrupt -
--aks result in a return . ENB

f..~ b~ top of the dis- interrupts

Vs

=2 Valig?

allow interrupt brsak
(insure RF and live kays ars valid)
(sat ID(CRS)=-in dispatcher #lag-=1)

Turn o+

(+)=(ievel A) (PC2AFE)

(t)=(+)+2

(level A)=({)

CP Timer

WNER(CRS)=
PC2A?

yes

7~

| (PC2A)=FC3-
li.‘\
u-code
waifd for
interrups
idle locp
' SO(CRS)=9 .
1R(CRS)=4

\y
Setup kays anﬁ‘
Progrem Ccunte
Turn ocn C2 fim

L

SU(CRS)=[7

SO(CRS)={?
other avail=
able

Fient

‘ ves
SAVE
SWITCH
CRS=CRS under, mask >
Y <::E:]
JYNER (CRS }=FCEZA
: N
Restors DTARZ,
1 OTAR3, TIMER,
and XEY. S
4 Res+:
fetch szve mass Tat
L/
Restcrs GR's,
r='s and 2R's
1ra &. rmdm— e .

B e Ik R R

*The registers to be
saved are a parametfsr
passad as a stertiog AF
address in (TR9,L)

SAVE
under mask

Save timer
and Keys

h."4

‘Eave mask=9

i1 registe
saved?

o

shif+ save

YesS oE(REAL

=@
no

macshk | @ feim ,

" sat bit in
save meask

!

gTore reglster

into PC3

Figure 7.

- — — wv— i — e

vas

i SD(CRS)=]

y

.“‘_l‘-. L

(e

-—i

It

fn?errupf<J//

WV

Input
Keys

e

| ENB

(429 ns)

(Interrupt Enable)

Generatea
Additional
Qelav

" address='63
(P400) CAl
RP=4] address *
84y ICPN (Clezr FPri-net)
Ring Q
. A\)
lceN | (Clear L =RF
Brlnet) ((éddress))‘q U
- e
RPH=9 .
—_— -- E?L=(address)+l
INH >

Elaima 2

J (address=

| (address)+|
generate cCR

u=code
RTN

s el sem we msEm . me wetend Gma w8

INOTIFY

J

PB=PSWF3
KEYS=PSWKEYS

5\ H
v

I
-

0p:Code Bi+ 16=8 end .

beginning

Op.Csde 8i+ 1524 no CAI "D

coumr=count-|

! issue CAl
- ‘- % "
t) .-
-
e
.

- % Y
S A /
N N o 8 Fault v Fault Iable i
‘ » Y R aul+ Vector . CALF
kﬁ&il — V8 ¢ 7 32-biT AP
52)_Ring | Fault Vector . Fault #4
55 [~ FVI =g 7 fault .
54 i #*4 CALF
55 [Reserved — - o 32-8it AP
56 p— 1} Ring 3 Vault Vector Fault #1
57— "0 > .
38 | Page Fault Yector (Ring g) -+
2o — FFY - —
39 -
FIRST -
6l NEXT. —
62 [ast_ _/
- N\&
Notas: Fault Vectors czniain aporcprizies ring numbers
. =D P389 Vector address = Fault # +!'62
PBL
KEYSH Faults
FCODEH(11])
.| FADDRH Fault # offsat vector FCCOEH(II) FADCR(12) Ring Save
FADDRL(12) RXM 9 2 182 - addrass currsnt oac
- FEH Process | 4 '63 abort flags -~ g. cur
A - PBL Page 2 o 164 - address o} bac
Wy KEYSH SvC 30 4 '635 - - current cur
F FCCOEH(] 1) utl 4 '29 '66 currsnt RPL address current bac
F ADORH ILL g '4g 72 current RPL address ° current bac
FADDRL(12) Access "Il 144 '73 code address @ tac
et T~ Arith. 'l2 'S¢ '74 ccde addrass current cur
N =vailabl=(Stack '|3 '54 '75 code address) bac
N frame TR Segment '14 '6% 176 ccde address) bac
Paointer '|5 '64 '77 ccde address current bac
\ of pointer
(@; last frame Entry to cemmen handler (FAULT)
RP = proper RP To save (backsd up if necessary)
. FCODEH(I1) = fault code (i needed)
FADOR(12) = address (if needed) . ' ’
FCODEL = fault #4=P4gg fault,table cftset
LATCHE = @ fault
| page fault (LATCH7 must=9)
LATCH7 = 9 go to ring 4
| use currsnt ring
O .
N 3 B .
U Figure 1d.

. e e e s as
. teboasa.e e e o iwa camiew memaw - - - @ lret

On Entry:
= arcper RP to save
FCCOEH(11) = fault code

FAULT

FCODEL = fault#*a

FADCH = address(SN)
FACORL(12) = addrass(iN)

LATCHE = 8 fault

| page fault
LATCH? = 3 usa ring 9
| use current ring

veetor =
'52+FfaulT#

¥,

 (vector))srPL

RPH=9

» ﬁPL?fvecfor)+l

" (+1)=(T3D)
(42)=(NEXT)

-

SAVE PEH, FSL
KEYS, FCCOE and
FAQDOR in con-
cealed stack
TI)=(NEXT)+6

-

_J

(NEXT)=($3)

(+3)=(FIRST)

RP=((13))+faulT7#43

(2,8) (1,8) .
(Page Fauld)
(Ring @) .
%LA,. } (current ring)
(t3)=FV9 (+3)=FV(ring#) (+3)=PFV
Kays=64Y

Figure il.

Software check catchers reside in the interrupt segment (4) and are 8§ words each.

The first 4 words are used as a PSW save area as:

—

Ioterrupt Segment (4)
1299

1278

)
Q~NoWmph LN ~—-

'39

SYNYowmPhUN—

-
w

NOoO W s U N —

Figure 12,

____,,/’//’__ The check offsats and correspandi:
P30Q vectors ara:
| roA | Power Fail Check Offsat Vecta
FaL Power ral | 7200 T80
KEYS _| Memary Far. 1278 '67
|__MODALS Machine Chk. 396 79
, Missing Mem. '319 171
code : .
FSr | Memory Parity
psL - In 2l casas, +he saved FS is the
L KersS | current F8 when The check cecurra
MODALS
code Entry To coemmon handler (CHECK)
_ PFeEr __| Machine Check REQIV ='P4Q00Q offset
PBL P30Q0 vector=(cifsat-'200)
| KEYS _|
MCDALS LATCHS = 34 RP is proper RP o savt
= | proper RP is in FEBSAVE
(Note: FESAVE=g Implies in
code dispaicher)
| FBH __| Missing Memory Mcdule
PBL
| KEYS _|
MODALS -
ccde

- -
. . o PO
- . Te mies Cwm e cmmm—— et A A—— i S .
- —emmes Ao ®a > Al e - - - e s ma a v we—— . .-

megnos-ic <+a+us Word (OSW)

. 8¢ bits, Registars '34 »135%'36 (named DS‘HP.MA OSASTAT, and 0SwPS)
Bi+s],32: OSWRMA

33

.
.

-
.

36:
’ ;7’39:

49:

4l

42:

43.
44,462

° 47

. 48:
43:

33,48: DSWSTATH Vaild on all checks excepd Pawer Fail
49,64: DSWSTATL as follows: .
63,80: OSWFS
t{ 2 3 4f(5 6 7Ti.819 1ot 12113{14 15 16
33| 341353637 38| 39| 46| 41| 42]43] 44| 45| 46] 47| 48| OSWSTATH
¢l M M| M| Mcnine zl el eleun|re cackup | 0|10 '
l CI| P MiCreck Cade! C| C| C linv | Caunt M [EBus
Miclec X
v'e
112 3 4|5 6§ 7 9 o1t 12 13}14 15 16
17118 1% 20]21 22 =3 25 26127 28]29130 31 32
59160161162)863]84 DSWSTATL

[Syndreme

lnv l

C!=C‘xec‘< |mmedizta

MC=Machine Check

MF=Memory Parity (E22Q)

MM=Missing Memory’

Machine Check Czde

- @=Paripherz| Data (EFD) Gu-rpu"

I=Peripheral Address (ZFA) Inpu"

2=Memory Date (EMD) Quipur

3=Cache Data (RCD)

4=Feripheral Addrass (EPA) Quiput

5=RDX~-EF0 [nput

g=Memory Addrass (ZMA) o .

7=Register File

Not RCM Parity (Reset for RCY Parisy error - ACS cnly)

E"..QPECC Uncarreciable E-ror - -
ECCC=£CC Corracted Eqror .

Bup Inv=RP backup csunt (44~48) invalld '
RP Backup Count-zmount RPL (DSWFS) was incremented in curreat ms-"uc*icn
CMX, set |f check sesurred during CMX

10 Bus, set If check cczurred during CMX, Pi0 or Imberrupt u-code
FMA [av=0SWRMA Invalid: (rosslb!a trem ECU and MM only)

8
24
49 30]5] 152153|54]55|561|57.) ¢8
Mod Resarved y~Verify Test §
#

" 50: Reserved
51,355: ECCC Syndreme=S syndrome Si%son a c:rracfed errsr
56: Mod #=tow order address bi+ of memory mcdule causing +he errar
57,58: Resarved
59,64: u-VYerity test § set en ‘al lure during Mas"er Clear or WR" Instructicn
¥alidity:
Always :1=33, 43,47-48,59—355
I+ bit 34 set :37-47
35 '41-42 3€ 1¥ bit 42 set:51-33
38 56 - :

[+ Bid 43 rese?’44-46

I+ is the rsspéns.ibili'ry of The check handling ssifware To clear +the DSW aitar a check
has been precessad. .

Figure |3.

-

w—

(C

-

v,\nn\dh 7 _/
]

save RD
| REQOIV='319
- - INVCI

Ay

CHDIN
CMX

\y

read memcry

module #

h 4

set 0SW

status bitTs

[t 4

save RD
REQIV="'309 -

</

(O}
ccde, RCM,
CMX

satT OSW
status bits

A i

L

save RD
REQ|Y=1279

4

read memory
medule #

L

sat DSW
status bhiTs

CHKDIN

-

read RP backup
count and save
praper RP/FSSA

(E

read appropri-
ate data bits

RTN

t -
SN ;
s

set EOQl flag
restere RD

Figure 14,

no (ECCC)
. \J
read ECCC
syndrcme
yes
(CMX or PIQ or Interrupt)
MCM=9
4
< MCN=]

. . e e i s e et s e e b @« mme =me v v e b b e mes 1§ Lo Sin mpaemar o s aren -t W ————— e — - -

Qn Enfry: RP=proper RP To CHECK . ."ﬁaﬁ
save Y
. ' N

REQIV =P4g@ ofiser _
Machine Check Mcde set

—— I NH
S MCM=4

| RP=FESAVE

, oft Process cn - .
GENIN] Exchange 894) ‘
W .

* ”
FCCOEL= SAVE F8H, PFEL, =
REQIV/2-%112 KEYS, and MCDALS
=(OFFSET-1222)/4 (before INM) in

CHECK header

|keys=64v, INH

A

RP=4} (OFFSET=¢)

¥The actual calculation of P390
check vector is as fol lows:

In CHECK: FCQDEL = QOFFSET/2-'119

(OFFSET-'229)/2

(FCODEL+'319)/4

FCODEL/4+'62

(¢ (OFFSET-'229)/2)/4+'62

(OFFSET~'220)/8+'62 - .

(OFFSET-'209-"22)/8+'62

(OFFSET-'200)/8-2+'62 : . .
(OFFSET-'200)/8+'68 : '

in FAULT: FCCOEL

naapu

naoan

This circuitous czjculation is usad to
avoid dividing a8 negative number on 2
power fai] check.

Nota: 1289 (Fower fail offset)-'220 = -129.

Figure 15,

(vm—y
—

’mﬂJanmmewdmas

r—

{mm{ﬂd_l\)mmé

)

{

]

FiHHCiC

Ci 0] L} Adr I s
:LF [t Made E1CiC o}]
%j N X 3

- AT

Mcede
168
328
4R
32R
321

e4v

1 Dispatchar
2ve Oone 3

FLEX=F allows FLEX Faults

1 b

Qg™

N—-——-—-—-a—-—-—-——
Hmﬁoqmm&ut\l—-oqmmnum—-o -

. | OWNER

Gr@
GR1
GR2(1,A, LH!
CR3(EH)
GR4
GR5(3,5,Y)
GRE
GR7(3,X)
FRE(I3)

FRI(4)
-(8}
Fa
S8(14)
Le(1e)
AB
DTARS(19)
OTARZ
OTARI
OTARG
KEYS

FCCRE(] 1)
FACCR
TIMER

(medzls)

-(12)

a | R0 - 0 40
_F I - ! 41
r | TRZ - 2 42
<~} TR3 - 3 43
» - R4 - 4 44
(2 a3 - 5 45
\ %ﬁma - 6 45
" \TRT . - 7 47
i@ | RoMxi - 1o 59
iL | RCMXZ - I 51
iz RATMPL | 12 52
i= [’saTl - 13 53
e |RSGT2 - 14 54
= |RECCH - 15 55
s |Recc2 - 16 55
78 REOIY 17 57
2 |z=m0 |owne. 28 | 29y | 21y | €0
7t |rFssave | - 21 51
=z 22| ¢22) | 2. | 82
= 23 63
ze 24 | ¢24) | (z5) | &4
= 25 63
= 25| 2 | 2 | es
T 27| . 67
T |FswPa - w | Ga) | Gy |70
3r |Fsukeys| - 3t - 71
32 |FRA:PLAlFCEA 2| G | @ |72
~= |fea:Fislrcas | | 33 _t 3. .
. ~lnswrMA | - 34 | (34) | (35) | 74
T . MSTAT! - 35 75
i ROSWF3 - % | (36) | 370 | 76
= 37 77
KEYSH

KEYSL (Madals)

! lz I3 Idlslal-/la lghc!r 32113[435#5

g Y
Nt
Bt M

Figure |8.

CRS | M| P} 5] MCM
X
CiMi G

Set=enable interrupts
Sei=YecTerad intarrupt mode
Current Register
Set=mepped |/0
Set=Processs Exchange Mcde
Sei=Secmeniaticn Mcde
Machine Chsck Mcode

Sst

100
101

102
103
104
{Q3
106
197
110
1

112
I3
14
115
116
17
120
121

122
123
124
125
126
127
13Q
131

132
133
124
135
138
137

eiemam = aa s e warastmms - s e seemmimoom ceimmmeemmenl me < sen et e N

follewing either a Master Clear or a HALT If nct running in segmented

mede.

I+ is necessary o make mz2pped memory accesses if addrass +raps

are to be generated. |f running segmented, memory accessas will e
mapped To segment § unless an explici+ sagment number is entersd in
§85-16. .

Regié?ers: Register addrass is in address register (switches down)

For CRS, conly low erder S bits are used; for absolute,
only low order 8 bits ars used Y+| (STORS/FZICH) cperates
exactly as fer memory with the address being pre—incrementad.

Null Vector: In P-394 mede, i an exrernz! interrupt, fzuld, or check attamots

to vector throuch a memcry location confteining 2 3, The follcwing

actic

n is taken:

. HALT) . .

data and address |ights clearad ' .
RP = address trzoped SR :
PEH = RFH

TR2ZL = address of vec?u%

Figure 7.

_Ss2 $S3 sS4 /
§85-16 B
absolute high hatt [> e
. <-—— SS11-16 - ==
CRS liow hait . T/
e
: up bbsolute %hysiczl Address §5-00
fownt | memory
' down mapped . Segment #
Notes: With al! switches down, confro! panel works exactly as for the F-339

D,

P
cﬂ- .
-
-’

RRRCY s

\\

TRZH=9

TRZ2L=vecTor addr

TR2H=(RP)
TR3=RP

{=FEH

TR3=9 KEYS={ive kevs
CPANELS]
) XRead Function ¢
(1 '1529)
360 Q0! 010 ol 100 1 1o = 1
Stop/Step Fetech Y | Y+ Store Y Load Clear |Address Cz
R w 7 e
1e keys=KEYS TREL=TRIL+. f6s "or? addyp Tor! dat
- , INH W switchgs |w swiic
+ display + displ
v To lights |[+to ligh
SSTER . b
raad paneil lccs ; ¢
g- '52 into men
lces 6~ '57 3
i CPANELS
RFH=9
RPL=(7)
map logiczl
register +ile
address To 4
physical (-_
address =2 x
TR3=9 TR2E=4
.and.. and
display displa
o | ights To lig
N 2 L
CPANEL3
TR2H=RFL TR2H=RFE FlL= == ;
and and LeTR2H RFHT' 5
display ip display +p
lights- lights

>

VN

N
4

Ficura 18.

c———-——.
Y

	Cover Page
	Outline
	1
	I. Process Exchange
	-- A. Data Bases
	2
	3
	-- B. Instruction Primitives
	4
	-- C. Dispatcher and Register File Management
	5
	6
	II. Traps, Interrupts, Faults, Checks
	7
	-- A. External Interrupts
	8
	-- B. Faults
	9
	10
	11
	-- C. Checks
	12
	III. Register Files
	13
	IV. Control Panel
	14
	V. CP Timer
	15
	Figure 1
	16
	Figure 2
	17
	Figure 3
	18
	Figure 4
	19
	Figure 5
	20
	Figure 6
	21
	Figure 7
	22
	Figure 8
	23
	Figure 9
	24
	Figure 10
	25
	Figure 11
	26
	Figure 12
	27
	Figure 13
	28
	Figure 14
	29
	Figure 15
	30
	Figure 16
	31
	Figure 17
	32
	Figure 18
	33

